郑州体育职业学院《统计机器学习》2023-2024学年第一学期期末试卷_第1页
郑州体育职业学院《统计机器学习》2023-2024学年第一学期期末试卷_第2页
郑州体育职业学院《统计机器学习》2023-2024学年第一学期期末试卷_第3页
郑州体育职业学院《统计机器学习》2023-2024学年第一学期期末试卷_第4页
郑州体育职业学院《统计机器学习》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页郑州体育职业学院

《统计机器学习》2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、假设正在进行一项时间序列预测任务,例如预测股票价格的走势。在选择合适的模型时,需要考虑时间序列的特点,如趋势、季节性和噪声等。以下哪种模型在处理时间序列数据时具有较强的能力?()A.线性回归模型,简单直接,易于解释B.决策树模型,能够处理非线性关系C.循环神经网络(RNN),能够捕捉时间序列中的长期依赖关系D.支持向量回归(SVR),对小样本数据效果较好2、考虑一个推荐系统,需要根据用户的历史行为和兴趣为其推荐相关的商品或内容。在构建推荐模型时,可以使用基于内容的推荐、协同过滤推荐或混合推荐等方法。如果用户的历史行为数据较为稀疏,以下哪种推荐方法可能更合适?()A.基于内容的推荐,利用商品的属性和用户的偏好进行推荐B.协同过滤推荐,基于用户之间的相似性进行推荐C.混合推荐,结合多种推荐方法的优点D.以上方法都不合适,无法进行有效推荐3、在一个信用评估模型中,我们需要根据用户的个人信息、财务状况等数据来判断其信用风险。数据集存在类别不平衡的问题,即信用良好的用户数量远远多于信用不良的用户。为了解决这个问题,以下哪种方法是不合适的?()A.对少数类样本进行过采样,增加其数量B.对多数类样本进行欠采样,减少其数量C.为不同类别的样本设置不同的权重,在损失函数中加以考虑D.直接使用原始数据集进行训练,忽略类别不平衡4、假设要对一个时间序列数据进行预测,例如股票价格的走势。数据具有明显的趋势和季节性特征。以下哪种时间序列预测方法可能较为合适?()A.移动平均法B.指数平滑法C.ARIMA模型D.以上方法都可能适用,取决于具体数据特点5、在进行时间序列预测时,有多种方法可供选择。假设我们要预测股票价格的走势。以下关于时间序列预测方法的描述,哪一项是不正确的?()A.自回归移动平均(ARMA)模型假设时间序列是线性的,通过对历史数据的加权平均和残差来进行预测B.差分整合移动平均自回归(ARIMA)模型可以处理非平稳的时间序列,通过差分操作将其转化为平稳序列C.长短期记忆网络(LSTM)能够捕捉时间序列中的长期依赖关系,适用于复杂的时间序列预测任务D.所有的时间序列预测方法都能准确地预测未来的股票价格,不受市场不确定性和突发事件的影响6、在深度学习中,卷积神经网络(CNN)被广泛应用于图像识别等领域。假设我们正在设计一个CNN模型,对于图像分类任务,以下哪个因素对模型性能的影响较大()A.卷积核的大小B.池化层的窗口大小C.全连接层的神经元数量D.以上因素影响都不大7、在一个无监督学习问题中,需要发现数据中的潜在结构。如果数据具有层次结构,以下哪种方法可能比较适合?()A.自组织映射(SOM)B.生成对抗网络(GAN)C.层次聚类D.以上方法都可以8、在构建一个图像识别模型时,需要对图像数据进行预处理和增强。如果图像存在光照不均、噪声和模糊等问题,以下哪种预处理和增强技术组合可能最为有效?()A.直方图均衡化、中值滤波和锐化B.灰度变换、高斯滤波和图像翻转C.色彩空间转换、均值滤波和图像缩放D.对比度拉伸、双边滤波和图像旋转9、在一个强化学习问题中,智能体需要在环境中通过不断尝试和学习来优化其策略。如果环境具有高维度和连续的动作空间,以下哪种算法通常被用于解决这类问题?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法10、在强化学习中,智能体通过与环境交互来学习最优策略。如果智能体在某个状态下采取的行动总是导致低奖励,它应该()A.继续采取相同的行动,希望情况会改善B.随机选择其他行动C.根据策略网络的输出选择行动D.调整策略以避免采取该行动11、在进行迁移学习时,以下关于迁移学习的应用场景和优势,哪一项是不准确的?()A.当目标任务的数据量较少时,可以利用在大规模数据集上预训练的模型进行迁移学习B.可以将在一个领域学习到的模型参数直接应用到另一个不同但相关的领域中C.迁移学习能够加快模型的训练速度,提高模型在新任务上的性能D.迁移学习只适用于深度学习模型,对于传统机器学习模型不适用12、某研究团队正在开发一个用于预测股票价格的机器学习模型,需要考虑市场的动态性和不确定性。以下哪种模型可能更适合处理这种复杂的时间序列数据?()A.长短时记忆网络(LSTM)结合注意力机制B.门控循环单元(GRU)与卷积神经网络(CNN)的组合C.随机森林与自回归移动平均模型(ARMA)的融合D.以上模型都有可能13、假设正在进行一个图像生成任务,例如生成逼真的人脸图像。以下哪种生成模型在图像生成领域取得了显著成果?()A.变分自编码器(VAE)B.生成对抗网络(GAN)C.自回归模型D.以上模型都常用于图像生成14、在进行特征选择时,有多种方法可以评估特征的重要性。假设我们有一个包含多个特征的数据集。以下关于特征重要性评估方法的描述,哪一项是不准确的?()A.信息增益通过计算特征引入前后信息熵的变化来衡量特征的重要性B.卡方检验可以检验特征与目标变量之间的独立性,从而评估特征的重要性C.随机森林中的特征重要性评估是基于特征对模型性能的贡献程度D.所有的特征重要性评估方法得到的结果都是完全准确和可靠的,不需要进一步验证15、在一个强化学习问题中,如果环境的状态空间非常大,以下哪种技术可以用于有效地表示和处理状态?()A.函数逼近B.状态聚类C.状态抽象D.以上技术都可以16、机器学习中,批量归一化(BatchNormalization)通常应用于()A.输入层B.隐藏层C.输出层D.以上都可以17、在机器学习中,模型评估是非常重要的环节。以下关于模型评估的说法中,错误的是:常用的模型评估指标有准确率、精确率、召回率、F1值等。可以通过交叉验证等方法来评估模型的性能。那么,下列关于模型评估的说法错误的是()A.准确率是指模型正确预测的样本数占总样本数的比例B.精确率是指模型预测为正类的样本中真正为正类的比例C.召回率是指真正为正类的样本中被模型预测为正类的比例D.模型的评估指标越高越好,不需要考虑具体的应用场景18、在构建一个机器学习模型时,如果数据中存在噪声,以下哪种方法可以帮助减少噪声的影响()A.增加正则化项B.减少训练轮数C.增加模型的复杂度D.以上方法都不行19、想象一个无人驾驶汽车的环境感知任务,需要识别道路、车辆、行人等对象。以下哪种机器学习方法可能是最关键的?()A.目标检测算法,如FasterR-CNN或YOLO,能够快速准确地识别多个对象,但对小目标检测可能存在挑战B.语义分割算法,对图像进行像素级的分类,但计算量较大C.实例分割算法,不仅区分不同类别,还区分同一类别中的不同个体,但模型复杂D.以上三种方法结合使用,根据具体场景和需求进行选择和优化20、在一个金融风险预测的项目中,需要根据客户的信用记录、收入水平、负债情况等多种因素来预测其违约的可能性。同时,要求模型能够适应不断变化的市场环境和新的数据特征。以下哪种模型架构和训练策略可能是最恰当的?()A.构建一个线性回归模型,简单直观,易于解释和更新,但可能无法处理复杂的非线性关系B.选择逻辑回归模型,结合正则化技术防止过拟合,能够处理二分类问题,但对于多因素的复杂关系表达能力有限C.建立多层感知机神经网络,通过调整隐藏层的数量和节点数来捕捉复杂关系,但训练难度较大,容易过拟合D.采用基于随机森林的集成学习方法,结合特征选择和超参数调优,能够处理多因素和非线性关系,且具有较好的稳定性和泛化能力二、简答题(本大题共5个小题,共25分)1、(本题5分)解释如何在机器学习中处理异常值。2、(本题5分)谈谈在高维数据中,如何进行特征工程。3、(本题5分)解释机器学习在能源管理中的优化策略。4、(本题5分)简述机器学习中的自动机器学习(AutoML)。5、(本题5分)解释机器学习中长短时记忆网络(LSTM)的工作原理。三、应用题(本大题共5个小题,共25分)1、(本题5分)利用GAN生成新的图像风格。2、(本题5分)利用KNN算法对土壤的肥力进行分类。3、(本题5分)借助民俗学数据传承和保护民俗文化。4、(本题5分)根据交通流量数据预测道路拥堵情况,优化交通管理。5、(本题5分)通过进化生物学数据研究物种的进化历程和机制。四、论述题(本大题共3个小题,共30分)1、(本题10分)探讨在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论