浙江中医药大学滨江学院《设计素描(2)》2023-2024学年第一学期期末试卷_第1页
浙江中医药大学滨江学院《设计素描(2)》2023-2024学年第一学期期末试卷_第2页
浙江中医药大学滨江学院《设计素描(2)》2023-2024学年第一学期期末试卷_第3页
浙江中医药大学滨江学院《设计素描(2)》2023-2024学年第一学期期末试卷_第4页
浙江中医药大学滨江学院《设计素描(2)》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第2页,共2页浙江中医药大学滨江学院

《设计素描(2)》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的应用于自动驾驶领域,需要实时检测道路上的交通标志和标线。假设车辆在高速行驶中,以下哪种技术能够快速准确地检测到各种交通标志,并且对光照变化和遮挡具有较强的鲁棒性?()A.基于颜色和形状特征的检测方法B.基于深度学习的检测方法,结合多尺度特征C.基于边缘检测和形态学操作的方法D.基于模板匹配和特征点匹配的方法2、计算机视觉在农业中的应用可以帮助监测农作物的生长状况。假设要通过图像分析判断农作物的病虫害程度,以下关于农业计算机视觉应用的描述,正确的是:()A.仅依靠农作物的颜色特征就能准确判断病虫害的程度B.不同农作物品种和生长阶段对病虫害判断的影响不大C.结合图像的纹理、形状和颜色等多特征,可以更准确地评估农作物的健康状况D.农业环境的复杂性对计算机视觉的应用没有挑战3、在计算机视觉中,以下哪种方法常用于图像的目标检测中的遮挡处理?()A.上下文信息B.跟踪历史C.多视角融合D.以上都是4、在计算机视觉中,深度估计是确定场景中物体距离相机的距离。以下关于深度估计的说法,错误的是()A.可以通过立体视觉、结构光或飞行时间等技术来获取深度信息B.深度学习方法在单目深度估计中取得了显著进展C.深度估计对于三维重建、虚拟现实和增强现实等应用具有重要意义D.深度估计的结果总是非常精确,不需要进行后处理和优化5、在计算机视觉的目标检测中,对于小目标的检测往往具有较大的挑战性。为了提高小目标检测的准确率,以下哪种策略可能是有效的?()A.多尺度特征融合B.增加训练数据中的小目标样本C.使用更高分辨率的输入图像D.以上都是6、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声,同时尽可能保留图像的细节和边缘信息。以下哪种去噪方法可能更适合?()A.中值滤波,用邻域中值代替像素值B.均值滤波,用邻域平均值代替像素值C.基于深度学习的图像去噪模型,如DnCNND.不进行任何去噪处理,保留原始噪声图像7、计算机视觉在体育赛事分析中的应用可以提供更深入的比赛洞察。假设要分析一场足球比赛中球员的跑位和传球模式,以下关于体育赛事计算机视觉应用的描述,正确的是:()A.仅依靠球员的位置信息就能全面分析比赛中的战术和策略B.球员的速度和加速度等动态信息对比赛分析的价值不大C.结合深度学习和轨迹分析技术可以更有效地挖掘比赛中的关键模式和趋势D.比赛场地的光照和摄像机视角对计算机视觉分析的结果没有影响8、图像分割是将图像分成不同的区域或对象。假设要对医学影像中的肿瘤区域进行精确分割,以下关于图像分割方法的描述,正确的是:()A.手动分割是最准确的方法,不需要借助计算机算法B.基于阈值的图像分割方法能够适用于所有类型的医学影像分割问题C.深度学习中的全卷积网络(FCN)及其变体在医学图像分割中具有很大的潜力D.图像分割的结果只取决于所使用的分割算法,与图像的预处理无关9、对于视频中的目标跟踪任务,假设目标在视频中经历了快速的外观变化和严重的遮挡。以下哪种策略有助于保持跟踪的准确性和稳定性?()A.结合目标的运动模型和外观模型进行预测B.仅依赖目标的初始外观特征进行跟踪C.当出现遮挡时,停止跟踪并等待目标重新出现D.随机调整跟踪算法的参数10、在计算机视觉的图像风格迁移任务中,假设要将一张照片转换为具有特定艺术风格的图像,以下哪种技术可能对生成逼真的风格效果起到关键作用?()A.对抗生成网络(GAN)B.自编码器(Autoencoder)C.变分自编码器(VAE)D.玻尔兹曼机(BoltzmannMachine)11、计算机视觉中的表情识别旨在判断图像或视频中人物的表情。假设要开发一个用于在线教育的表情识别系统,以下关于表情特征的提取,哪一项是需要重点关注的?()A.提取面部肌肉的细微运动作为特征B.仅考虑眼睛和嘴巴的形状变化C.忽略面部的整体轮廓,只关注局部特征D.不进行任何特征提取,直接使用原始图像进行分类12、计算机视觉在无人驾驶中的应用至关重要。假设要通过车载摄像头识别道路上的交通标志和标线,以下关于应对复杂环境变化的策略,哪一项是不正确的?()A.利用多模态数据融合,如结合摄像头和激光雷达的信息B.定期更新模型,适应新出现的交通标志和标线C.只依靠单一摄像头的图像信息,不考虑其他传感器D.对不同天气和光照条件下的数据进行增强训练13、在计算机视觉的目标跟踪任务中,需要持续跟踪一个或多个运动目标。假设要跟踪一个在操场上跑步的人。以下关于目标跟踪算法的描述,哪一项是不正确的?()A.可以基于特征匹配的方法,在连续的帧中找到目标的相似特征来实现跟踪B.深度学习中的相关滤波算法能够快速准确地跟踪目标,适应目标的外观变化C.目标跟踪算法能够在目标被遮挡或短暂消失后,仍然准确地恢复跟踪D.无论目标的运动速度和轨迹如何复杂,目标跟踪算法都能完美地跟踪14、在计算机视觉的图像配准任务中,需要将不同时间或视角拍摄的图像进行对齐。假设要将两张拍摄角度不同的卫星图像进行精确配准,图像中存在地形变化和云层遮挡。以下哪种图像配准方法在这种困难情况下能够取得较好的效果?()A.基于特征的配准B.基于灰度的配准C.基于变换模型的配准D.基于深度学习的配准15、在计算机视觉中,图像分割旨在将图像划分为不同的区域,每个区域具有相似的特征。以下关于图像分割的叙述,不正确的是()A.图像分割可以基于像素的颜色、纹理等特征进行B.深度学习方法在图像分割中取得了显著的成果,如全卷积网络(FCN)C.图像分割在医学影像分析、自动驾驶场景理解等方面具有重要作用D.图像分割的结果总是完美的,能够准确地将图像中的所有物体都分割出来16、在计算机视觉的图像超分辨率任务中,假设要将一张低分辨率图像恢复为高分辨率图像。以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的方法简单快速,但恢复出的图像细节不够清晰B.基于深度学习的方法能够生成逼真的高分辨率图像,但需要大量的训练数据和计算资源C.图像超分辨率技术可以无限制地提高图像的分辨率,不受硬件限制D.所有的图像超分辨率方法都能够完全恢复出原始高分辨率图像的所有信息17、计算机视觉中的视频理解任务包括对视频内容的分析和解释。假设要理解一段新闻视频的主要内容和事件发展。以下关于视频理解的描述,哪一项是不正确的?()A.可以通过对视频中的帧进行分类、目标检测和跟踪来实现视频理解B.深度学习中的注意力机制可以帮助聚焦视频中的关键信息,提高理解的准确性C.视频理解只需要关注视觉信息,不需要考虑音频和文字等其他模态的信息D.可以结合知识图谱和语义理解技术,对视频中的内容进行更深入的分析和解释18、计算机视觉中的医学图像分析中,假设要对肿瘤进行检测和分割。以下关于医学图像分析方法的描述,正确的是:()A.由于医学图像的特殊性,传统的计算机视觉方法无法应用于医学图像分析B.深度学习方法在医学图像分析中能够准确检测肿瘤,但对小肿瘤容易漏检C.多模态医学图像融合可以提供更丰富的信息,但融合算法复杂,效果不稳定D.医学图像分析的结果不需要经过医生的审核和确认,可以直接用于诊断19、图像检索是计算机视觉的一个重要应用。假设我们要在一个大型图像数据库中快速找到与给定查询图像相似的图像,以下哪种图像表示方法可能对提高检索效率有帮助?()A.全局特征表示B.局部特征表示C.基于深度学习的特征表示D.基于颜色直方图的特征表示20、计算机视觉中的视频压缩是为了减少视频数据的存储空间和传输带宽。假设要对一段高清视频进行压缩,同时保持较好的视觉质量。以下关于视频压缩方法的描述,正确的是:()A.帧内压缩通过去除图像内部的冗余信息实现压缩,对图像质量影响较小B.帧间压缩利用相邻帧之间的相似性进行压缩,但会引入明显的失真C.运动估计在帧间压缩中不重要,对压缩效率提升作用不大D.视频压缩的码率越低,压缩效果越好,视觉质量也越高二、简答题(本大题共3个小题,共15分)1、(本题5分)简述计算机视觉在自动驾驶中的应用。2、(本题5分)说明计算机视觉在租赁行业中的应用。3、(本题5分)解释计算机视觉中纹理分析的意义和方法。三、分析题(本大题共5个小题,共25分)1、(本题5分)探讨某音乐节的周边产品设计,研究其如何通过与音乐节相关的图案、色彩、实用物品等满足乐迷的需求,同时扩大音乐节的品牌影响力。2、(本题5分)研究某化妆品品牌的品牌代言人广告设计,分析其视觉效果、代言人形象和品牌形象的契合度,讨论如何吸引消费者的关注和提高品牌的销售。3、(本题5分)分析某瑜伽馆的会员招募海报和室内软装设计,研究如何通过宁静、舒适的视觉元素吸引潜在会员。4、(本题5分)解析某食品品牌的包装设计升级案例,探讨其在保留品牌识别度的同时,如何通过创新设计提升产品的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论