




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章导数及其应用复习小结1/29/2025本章知识结构导数导数概念导数运算导数应用函数的瞬时变化率运动的瞬时速度曲线的切线斜率基本初等函数求导导数的四则运算法则简单复合函数的导数函数单调性研究函数的极值、最值曲线的切线变速运动的速度最优化问题1/29/2025曲线的切线
以曲线的切线为例,在一条曲线C:y=f(x)上取一点P(x0,y0),点Q(x0+△x,y0+△y)是曲线C上与点P临近的一点,做割线PQ,当点Q沿曲线C无限地趋近点P时,割线PQ便无限地趋近于某一极限位置PT,我们就把直线PT叫做曲线C的在点P处的切线。一.知识串讲1/29/2025(一)导数的概念:
1.导数的定义:对函数y=f(x),在点x=x0处给自变量x以增量△x,函数y相应有增量△y=f(x0+△x)-f(x0),若极限存在,则此极限称为f(x)在点x=x0处的导数,记为f’(x0),或y|;1/29/2025
2.导函数:如果函数y=f(x)在区间(a,b)内每一点都可导,就说y=f(x)在区间(a,b)内可导.即对于开区间(a,b)内每一个确定的x0值,都相对应着一个确定的导数f’(x0),这样在开区间(a,b)内构成一个新函数,把这一新函数叫做f(x)在(a,b)内的导函数.简称导数.记作f’(x)或y’.即f’(x)=y’=1/29/2025
3.导数的几何意义:函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线斜率为k=f’(x0).所以曲线y=f(x)在点P(x0,f(x0))处的切线方程为
y
y0=f’(x0)·(x-x0).
4.导数的物理意义:物体作直线运动时,路程s关于时间t的函数为:s=s(t),那么瞬时速度v就是路程s对于时间t的导数,即v(t)=s’(t).1/29/2025返回1/29/2025导数的运算法则:法则1:两个函数的和(差)的导数,等于这两个函数的导数的和(差),即:法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即:法则3:两个函数的积的导数,等于第一个函数的导数乘第二个函数,减去第一个函数乘第二个函数的导数,再除以第二个函数的平方.即:返回1/29/2025当点Q沿着曲线无限接近点P即Δx→0时,割线PQ如果有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:PQoxyy=f(x)割线切线T返回1/29/20251)如果恒有f′(x)>0,那么y=f(x)在这个区间(a,b)内单调递增;2)如果恒有f′(x)<0,那么y=f(x)在这个区间(a,b)内单调递减。一般地,函数y=f(x)在某个区间(a,b)内定理aby=f(x)xoyy=f(x)xoyabf'(x)>0f'(x)<0如果在某个区间内恒有,则为常数.返回1/29/20252)如果a是f’(x)=0的一个根,并且在a的左侧附近f’(x)<0,在a右侧附近f’(x)>0,那么是f(a)函数f(x)的一个极小值.函数的极值1)如果b是f’(x)=0的一个根,并且在b左侧附近f’(x)>0,在b右侧附近f’(x)<0,那么f(b)是函数f(x)的一个极大值注:导数等于零的点不一定是极值点.2)在闭区间[a,b]上的函数y=f(x)的图象是一条连续不断的曲线,则它必有最大值和最小值.函数的最大(小)值与导数xy0abx1x2x3x4f(a)f(x3)f(b)f(x1)f(x2)返回1/29/20251/29/20251/29/20251/29/20251/29/2025(五)函数的最大值与最小值:
1.定义:最值是一个整体性概念,是指函数在给定区间(或定义域)内所有函数值中最大的值或最小的值,最大数值叫最大值,最小的值叫最小值,通常最大值记为M,最小值记为m.1/29/2025
2.存在性:在闭区间[a,b]上连续函数f(x)在[a,b]上必有最大值与最小值.3.求最大(小)值的方法:函数f(x)在闭区间[a,b]上最值求法:①求出f(x)在(a,b)内的极值;②将函数f(x)的极值与f(a),f(b)比较,其中较大的一个是最大值,较小的一个是最小值.1/29/20251/29/20251/29/20251/29/20251/29/20251/29/2025例1.已经曲线C:y=x3-x+2和点A(1,2)。求在点A处的切线方程?解:f/(x)=3x2-1,∴k=f/(1)=2∴所求的切线方程为:y-2=2(x-1),即y=2x1/29/2025变式1:求过点A的切线方程?例1.已经曲线C:y=x3-x+2和点(1,2)求在点A处的切线方程?解:变1:设切点为P(x0,x03-x0+2),∴切线方程为y-(x03-x0+2)=(3x02-1)(x-x0)又∵切线过点A(1,2)
∴2-(x03-x0+2)=(3x02-1)(1-x0)化简得(x0-1)2(2x0+1)=0,①当x0=1时,所求的切线方程为:y-2=2(x-1),即y=2x
解得x0=1或x0=-k=f/(x0)=3x02-1,②当x0=-时,所求的切线方程为:
y-2=-(x-1),即x+4y-9=01/29/2025变式1:求过点A的切线方程?例1:已经曲线C:y=x3-x+2和点(1,2)求在点A处的切线方程?变式2:若曲线上一点Q处的切线恰好平行于直线y=11x-1,则P点坐标为____________,切线方程为_____________________.(2,8)或(-2,-4)y=11x-14或y=11x+181/29/20251/29/20251/29/2025(1)正确理解导数的概念和意义,导数是一个函数的改变量与自变量的改变量的比值的极限,它反映的是函数的变化率,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动脉留置针护理规范与流程
- 转本录取就业协议书
- 项目开发责任协议书
- 转让牛蛙场地协议书
- 顶名购房资格协议书
- 造价咨询挂靠协议书
- 车位使用租赁协议书
- 护理人才竞聘演讲
- 驾照内部保密协议书
- 钢板废料出售协议书
- 工业用气体租赁合同协议
- 装饰石材矿山露天开采工程设计规范
- 2025年江苏省泰州市姜堰区中考一模历史试题(含答案)
- 2025年山东省应急管理普法知识竞赛参考试题库500题(含答案)
- 医院药房考试试题及答案
- 城市轨道交通工程常见质量问题控制指南(征求意见)
- 测血糖宣教课件
- 微生物实验室生物安全意外事件处理报告制度
- 布袋除尘器检修方案
- 《运动处方》课件-糖尿病人群运动处方
- 2025年湘美版(2024)小学美术一年级下册(全册)每课教学反思(附目录P49)
评论
0/150
提交评论