2025年湘教版高一数学上册阶段测试试卷_第1页
2025年湘教版高一数学上册阶段测试试卷_第2页
2025年湘教版高一数学上册阶段测试试卷_第3页
2025年湘教版高一数学上册阶段测试试卷_第4页
2025年湘教版高一数学上册阶段测试试卷_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年湘教版高一数学上册阶段测试试卷250考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共7题,共14分)1、已知{x1,x2,x3,x4}⊆{x|(x-3)•sinπx=1,x>0},则x1+x2+x3+x4的最小值为()

A.6

B.8

C.10

D.12

2、设f(x)=x2+ax是偶函数,g(x)=是奇函数,那么a+b的值为()

A.1

B.-1

C.-

D.

3、【题文】对数式有意义,则实数的取值范围是A.(3,4)∪(4,7)B.(3,7)C.(-∞,7)D.(3,+∞)4、【题文】已知关于的不等式的解集是则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、点为圆的弦的中点,则该弦所在直线的方程是()A.x+y+1=0B.x+y-1=0C.x-y-1=0D.x-y+1=06、三棱锥P﹣ABC中中;顶点P中在底面ABC中内的射影为O中,若。

(1)三条侧棱与底面所成的角相等;

(2)三条侧棱两两垂直;

(3)三个侧面与底面所成的角相等;

则点O中依次为垂心、内心、外心的条件分别是()A.(1)(2)(3)B.(3)(2)(1)C.(2)(1)(3)D.(2)(3)(1)7、若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是()A.2πcm2B.2cm2C.4πcm2D.4cm2评卷人得分二、填空题(共5题,共10分)8、对于正项数列定义若则数列的通项公式为____。9、若集合A={x|x2-2x<0},B={x|y=lg(x-1)},则A∩B为____.10、【题文】已知点P(x,y)在直线x+2y=3上移动,当2x+4y取得最小值时,过点P引圆的切线,则此切线段的长度为_______.11、【题文】已知直三棱柱中的每一个顶点都在同一个球面上,如果那么两点间的球面距离是____12、【题文】已知函数至少有一个值为正的零点,则实数的。

取值范围_____________。评卷人得分三、证明题(共7题,共14分)13、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.14、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面积S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.15、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.16、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.17、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.18、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.19、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共3题,共24分)20、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.21、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.

22、请画出如图几何体的三视图.

评卷人得分五、计算题(共3题,共30分)23、已知(a>b>0)是方程x2-5x+2=0的两个实根,求的值.24、(2002•宁波校级自主招生)如图,E、F分别在AD、BC上,EFCD是正方形,且矩形ABCD∽矩形AEFB,则BC:AB的值是____.25、(1)计算:|-|-+(π-4)0-sin30°;

(2)化简:.评卷人得分六、综合题(共4题,共12分)26、设L是坐标平面第二;四象限内坐标轴的夹角平分线.

(1)在L上求一点C,使它和两点A(-4,-2)、B(5,3-2)的距离相等;

(2)求∠BAC的度数;

(3)求(1)中△ABC的外接圆半径R及以AB为弦的弓形ABC的面积.27、如图;以A为顶点的抛物线与y轴交于点B;已知A、B两点的坐标分别为(3,0)、(0,4).

(1)求抛物线的解析式;

(2)设M(m;n)是抛物线上的一点(m;n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;

(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.28、设L是坐标平面第二;四象限内坐标轴的夹角平分线.

(1)在L上求一点C,使它和两点A(-4,-2)、B(5,3-2)的距离相等;

(2)求∠BAC的度数;

(3)求(1)中△ABC的外接圆半径R及以AB为弦的弓形ABC的面积.29、设圆心P的坐标为(-,-tan60°),点A(-2cot45°,0)在⊙P上,试判别⊙P与y轴的位置关系.参考答案一、选择题(共7题,共14分)1、D【分析】

由(x-3)•sinπx=1得,sinπx=则x>0且x≠3;

∵y=sinπx是以2为周期的奇函数;∴y=sinπx的对称中心是(k,0),k∈z;

∵y=的图象是由奇函数y=向右平移3个单位得到,∴y=的对称中心是(3;0);

即函数f(x)=sinπx-的对称中心是(3;0);

∵{x1,x2,x3,x4}⊆{x|(x-3)•sinπx=1;x>0};

∴当x>0时,最小值x1和x3、x2和x4关于(3,0)对称,即x1+x3=6、x2+x4=6;

则x1+x2+x3+x4=12;

故选D.

【解析】【答案】将“(x-3)•sinπx=1”两边同除以“x-3”,再分别判断两端函数的对称中心,得到函数f(x)=sinπx-的对称中心,再由对称性求出x1+x2+x3+x4的最小值.

2、A【分析】

由f(x)为偶函数;知a=0;

g(x)=是奇函数;得g(0)=0;

∴b=1;

∴a+b的值1.

故选A.

【解析】【答案】由f(x)为偶函数,知a=0,g(x)=是奇函数,得b=1,从而求得a+b的值。

3、A【分析】【解析】

试题分析:根据题意;由于对数式中底数大于零不等于1,真数部分大于零,因此可知。

对数式有意义;满足。

故可知答案为(3,4)∪(4,7);选A.

考点:对数式的含义。

点评:解决的关键是理解对数式子有意义时底数和真数部分的t的范围即可,属于基础题。【解析】【答案】A4、A【分析】【解析】【解析】【答案】A5、B【分析】【解答】点为圆的弦的中点,设圆心为则该弦所在直线与PC垂直,故弦的斜率为则由直线的点斜式可得弦方程为即选B.6、D【分析】【解答】解:三棱锥P﹣ABC中中;顶点P中在底面ABC中内的射影为O;

(1)若三条侧棱与底面所成的角相等;

则△POA≌△POB≌△POC;

∴OA=OB=OC;

∴O是△ABC的外心.

(2)若三条侧棱两两垂直;

则PA;PB、PC两两垂直;

连结AO;延长并BC于D,连结BO并延长并AC于E;

∵AP⊥BP⊥CP;

BP∩CP=P;

∴AP⊥平面BCP;

∵BC∈平面BCP;

∴AP⊥BC;

∵OP⊥平面ABC;BC∈平面ABC;

∴BC⊥OP;

∵AP∩OP=P;

∴BC⊥平面PAD;

∵AD∈平面PAD;

∴BC⊥AD;

同理AC⊥BE;

∴AD和BE分别是BC边;AC边上的高;

∴O是两高的交点;∴O是△ABC是垂心.

(3)若三个侧面与底面所成的角相等;

则分别作三个侧面△的斜高;

由三垂线定理;得OD⊥BC,OE⊥AC,OF⊥AB;

则∠PDO;∠PEO、∠PFO分别是三侧面与底面所成二面角的平面角;

∠PDO=∠PEO=∠PFO;

∵OD=OP•cot∠PDO;

OE=OP•cot∠PEO;

OF=OP•cot∠PFO;

∴OD=OE=OF;

∴O是△ABC的内心.

故选:D.

【分析】三棱锥P﹣ABC中中,顶点P中在底面ABC中内的射影为O,若三条侧棱与底面所成的角相等,则O是△ABC的外心;若三条侧棱两两垂直,则O是△ABC是垂心;若三个侧面与底面所成的角相等,则O是△ABC的内心.7、D【分析】【解答】弧度是2的圆心角所对的弧长为4,所以圆的半径为:=2;

所以扇形的面积为:×4×2=4cm2;故选D.

【分析】先求出扇形的弧长,利用周长求半径,代入面积公式s=αr2进行计算即可得解.本提属于基本题。二、填空题(共5题,共10分)8、略

【分析】【解析】试题分析:根据题意,由于那么可知所以则可知两式作差来得到数列的通项公式为考点:数列的通项【解析】【答案】9、略

【分析】

由集合A中的不等式x2-2x<0;

因式分解得:x(x-2)<0;

可化为:或解得:0<x<2;

所以集合A={x|0<x<2};

由集合B中的函数y=lg(x-1);得到x-1>0,解得:x>1;

所以集合B={x|x>1};

则A∩B={x|1<x<2}.

故答案为:{x|1<x<2}

【解析】【答案】求出集合A中一元二次不等式的解集确定出集合A;根据负数和0没有对数,得到x-1大于0,求出x的范围确定出集合B,求出两集合的交集即可.

10、略

【分析】【解析】

试题分析:当且仅当即时,等号成立,点又已知圆心

切线段的长度为

考点:基本不等式的应用、两点之间的距离公式.【解析】【答案】11、略

【分析】【解析】略【解析】【答案】12、略

【分析】【解析】当时,由可得满足题意;当时,的图象开口向上,且故必有两根均在原点的右侧,从而且解得当时,的图象开口向下,且故条件恒成立。

综上所述,所求的取值范围为【解析】【答案】三、证明题(共7题,共14分)13、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.14、略

【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;

(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;

则CE=AC•sin(α+β)=bsin(α+β);

∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根据题意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB•ACsin(α+β)=BD•AD+CD•AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.15、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.16、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.17、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.18、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=19、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、作图题(共3题,共24分)20、略

【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.

∵点A与点A′关于CD对称;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:铺设管道的最省费用为10000元.21、解:程序框图如下:

【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.22、解:如图所示:

【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.五、计算题(共3题,共30分)23、略

【分析】【分析】先把方程的两根代入程x2-5x+2=0,根据根与系数的关系得出+、的值,然后再代入求的值即可.【解析】【解答】解:∵是方程x2-5x+2=0的两实根;

∴a-5+2=0;

∴b-5+2=0,+=5,=2.

∴原式=[]÷+

=+=+=2•=2•=524、略

【分析】【分析】根据相似多边形对应边的比相等,设出原来矩形的长与宽,就可得到一个方程,解方程即可求得.【解析】【解答】解:根据条件可知:矩形AEFB∽矩形ABCD.

∴.

设AD=x;AB=y,则AE=x-y.

∴x:y=1:.

即原矩形长与宽的比为1:.

故答案为:1:.25、略

【分析】【分析】(1)中,负数的绝对值是它的相反数;即9的算术平方根3;任何不等于0的数的0次幂都等于1;熟悉特殊角的锐角三角函数值:sin30°=;

(2)中,通过观察括号内的两个分式正好是同分母,可以先算括号内的,再约分计算.【解析】【解答】解:(1)原式==-2;

(2)原式=

=

=.六、综合题(共4题,共12分)26、略

【分析】【分析】(1)设C(x;-x),根据两点间的距离公式(勾股定理)得到方程,求出方程的解即可;

(2)作BE⊥AC于E;求出AC,根据勾股定理求出BC,得到AC=BC,求出CE;BE,求出∠A即可;

(3)求出△ABC的高CD的长,求出AB的长,根据圆周角定理求出∠AO'B,证△AO'B≌△ACB,推出R=AC,根据三角形的面积和扇形的面积公式求出即可.【解析】【解答】解:(1)设C(x;-x);

∵AC=BC;

根据勾股定理得:(x+4)2+(-x+2)2=(x-5)2+;

解得:x=2;

∴C(2;-2).

答:点C的坐标是(2;-2).

(2)AC∥x轴;作BE⊥AC于E;

∴AC=2+4=6;

由勾股定理得:BC==6;

∴AC=BC=6,BE=3;CE=3;

∴∠ABC=∠BAC=30°.

答:∠BAC的度数是30°.

(3)设圆心为O’;

∵∠ACB=180°∠A-∠ABC=120°;

∴∠AO'B=360°-2×120°=120°;

∵AO=OB;

∴∠OAB=∠OBA=30°;

∴∠OAB=∠CAB;∠OBA=∠CBA,AB=AB;

∴△AO'B≌△ACB,

∴AO=OB=AC=BC=6;

∴R=6;

连接O'C交AB于D;

则CD⊥AB;

∵∠CAB=30°;

∴CD=AC=3;

由勾股定理得:AD=3;

∴AB=2AD=6;

∴S弓形ABC=S扇形OACB-S△ACB=-×6×3=12π-9.

答:(1)中△ABC的外接圆半径R是6,以AB为弦的弓形ABC的面积是12π-9.27、略

【分析】【分析】(1)已知了抛物线的顶点坐标;可将抛物线的解析式设为顶点式,然后将B点坐标代入求解即可;

(2)由于M在抛物线的图象上,根据(1)所得抛物线的解析式即可得到关于m、n的关系式:n=(m-3)2;由于m;n同为正整数,因此m-3应该是3的倍数,即m应该取3的倍数,可据此求出m、n的值,再根据“以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数”将不合题意的解舍去,即可得到M点的坐标;

(3)设出P点的坐标,然后分别表示出PA2、PB2、PM2的长,进而可求出关于PA2+PB2+PM2与P点纵坐标的函数关系式,根据所得函数的性质即可求出PA2+PB2+PM2的最大(小)值,进而可判断出所求的结论是否恒成立.【解析】【解答】解:(1)设y=a(x-3)2;

把B(0;4)代入;

得a=;

∴y=(x-3)2;

(2)解法一:

∵四边形OAMB的四边长是四个连续的正整数;其中有3;4;

∴可能的情况有三种:1;2、3、4;2、3、4、5;3、4、5、6;

∵M点位于对称轴右侧;且m,n为正整数;

∴m是大于或等于4的正整数;

∴MB≥4;

∵AO=3;OB=4;

∴MB只有两种可能;∴MB=5或MB=6;

当m=4时,n=(4-3)2=(不是整数;舍去);

当m=5时,n=(不是整数;舍去);

当m=6时;n=4,MB=6;

当m≥7时;MB>6;

因此;只有一种可能,即当点M的坐标为(6,4)时,MB=6,MA=5;

四边形OAMB的四条边长分别为3;4、5、6.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论