![2025年冀教版高二数学上册阶段测试试卷_第1页](http://file4.renrendoc.com/view10/M02/04/06/wKhkGWeYTMWAMryqAADe1KxylMs884.jpg)
![2025年冀教版高二数学上册阶段测试试卷_第2页](http://file4.renrendoc.com/view10/M02/04/06/wKhkGWeYTMWAMryqAADe1KxylMs8842.jpg)
![2025年冀教版高二数学上册阶段测试试卷_第3页](http://file4.renrendoc.com/view10/M02/04/06/wKhkGWeYTMWAMryqAADe1KxylMs8843.jpg)
![2025年冀教版高二数学上册阶段测试试卷_第4页](http://file4.renrendoc.com/view10/M02/04/06/wKhkGWeYTMWAMryqAADe1KxylMs8844.jpg)
![2025年冀教版高二数学上册阶段测试试卷_第5页](http://file4.renrendoc.com/view10/M02/04/06/wKhkGWeYTMWAMryqAADe1KxylMs8845.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年冀教版高二数学上册阶段测试试卷863考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、由于台风的影响;一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前的(不包括树根)长度是()
A.8m
B.10m
C.16m
D.18m
2、执行如图所示的程序框图,若输出则框图中①处可以填入()A.B.C.D.3、【题文】把函数的图象向左平移个单位得到的图象(如图),则()
A.B.C.D.4、【题文】在ΔABC中,已知D是AB边上一点,若则=A.B.C.D.5、“1<m<2
”是“方程x2m鈭�1+y23鈭�m=1
表示的曲线是焦点在y
轴上的椭圆”的(
)
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件评卷人得分二、填空题(共5题,共10分)6、设集合则.7、执行如图所示的程序框图,若输入的值为3,则输出的值是.8、某人睡午觉醒来,发觉表停了,他打开收音机想听电台整点报时,假定电台每小时报时一次,则他等待的时间不长于10min的概率是.9、【题文】(理)若且与垂直,则向量与的夹角大小为_______________10、已知点(3,-1)和(-4,-3)在直线3x-2y+a=0的同侧,则a的取值范围是______.评卷人得分三、作图题(共7题,共14分)11、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
12、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)13、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)14、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
15、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)16、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)17、分别画一个三棱锥和一个四棱台.评卷人得分四、计算题(共3题,共24分)18、如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.19、已知a为实数,求导数20、设L为曲线C:y=在点(1,0)处的切线.求L的方程;评卷人得分五、综合题(共4题,共24分)21、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.22、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心;以AD为半径作⊙A.
①证明:当AD+CD最小时;直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:____.23、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.24、已知等差数列{an}的前n项和为Sn,且a1=1,S3=0.参考答案一、选择题(共5题,共10分)1、C【分析】
由题意得BC=8m;AC=6m;
在直角三角形ABC中,根据勾股定理得:AB==10米.
所以大树的高度是10+6=16米。
故选C.
【解析】【答案】根据大树折断部分;下部、地面恰好构成直角三角形;根据勾股定理解答即可.
2、C【分析】试题分析:程序在运行过程中各变量的值如下表示:是否继续循环Sn循环前/01第一次是12第二次是34第三次是78第四次是1516,因为输出:S=15.所以判断框内可填写“n>8”,故选:B.考点:程序框图.【解析】【答案】C3、C【分析】【解析】因为函数图像可知函数的最大值为1,周期为w=2,同时代入点()得到=故选C.【解析】【答案】C4、D【分析】【解析】利用向量的线性运算.所以与已知式子比较知选D。【解析】【答案】D5、C【分析】解:若方程x2m鈭�1+y23鈭�m=1
表示的曲线是焦点在y
轴上的椭圆;
则{3鈭�m>0m鈭�1>03鈭�m>m鈭�1
即{m<3m>1m<2
解得1<m<2
即“1<m<2
”是“方程x2m鈭�1+y23鈭�m=1
表示的曲线是焦点在y
轴上的椭圆”的充要条件;
故选:C
根据椭圆的性质;结合充分条件和必要条件的定义进行判断即可.
本题主要考查充分条件和必要条件的判断,根据椭圆方程的性质是解决本题的关键.【解析】C
二、填空题(共5题,共10分)6、略
【分析】试题分析:集合所以考点:本题考查的主要知识点是不等式的解法以及集合的基本运算.【解析】【答案】7、略
【分析】试题分析:根据程序框图,得输出即输出结果为4.考点:程序框图.【解析】【答案】4.8、略
【分析】本题属于几何概型,一小时有60分钟,所以等待的时间不长于10min的概率是【解析】【答案】9、略
【分析】【解析】略【解析】【答案】10、略
【分析】解:若(3;-1)和(-4,-3)在直线3x-2y-a=0的同侧。
则[3×3-2×(-1)+a]×[3×(-4)+2×3+a]>0
即(a+11)(a-6)>0
解得a∈(-∞;-11)∪(6,+∞)
故答案为:(-∞;-11)∪(6,+∞).
由已知点(3;-1)和(-4,-3)在直线3x-2y+a=0的同侧,我们将A,B两点坐标代入直线方程所得符号相同,则我们可以构造一个关于a的不等式,解不等式即可得到答案.
本题考查的知识点是二元一次不等式与平面区域,根据A、B在直线两侧,则A、B坐标代入直线方程所得符号相反构造不等式是解答本题的关键.【解析】(-∞,-11)∪(6,+∞)三、作图题(共7题,共14分)11、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
12、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.13、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.14、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
15、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.16、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.17、解:画三棱锥可分三步完成。
第一步:画底面﹣﹣画一个三角形;
第二步:确定顶点﹣﹣在底面外任一点;
第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.
画四棱可分三步完成。
第一步:画一个四棱锥;
第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;
第三步:将多余线段擦去.
【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、计算题(共3题,共24分)18、略
【分析】【分析】作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.【解析】【解答】解:如图;作点B关于AC的对称点E,连接EP;EB、EM、EC;
则PB+PM=PE+PM;
因此EM的长就是PB+PM的最小值.
从点M作MF⊥BE;垂足为F;
因为BC=2;
所以BM=1,BE=2=2.
因为∠MBF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.19、解:【分析】【分析】由原式得∴20、解:所以当x=1时,k=点斜式得直线方程为y=x-1【分析】【分析】函数的导数这是导函数的除法运算法则五、综合题(共4题,共24分)21、略
【分析】【分析】根据OA=OB,得到△AOB是等腰直角三角形,则△NBF也是等腰直角三角形,由于P的纵坐标是b,因而F点的纵坐标是b,即FM=b,则得到AF=b,同理BE=a,根据(a,b)是函数y=的图象上的点,因而b=,ab=,则即可求出AF•BE.【解析】【解答】解:∵P的坐标为(a,);且PN⊥OB,PM⊥OA;
∴N的坐标为(0,);M点的坐标为(a,0);
∴BN=1-;
在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);
∴NF=BN=1-;
∴F点的坐标为(1-,);
∵OM=a;
∴AM=1-a;
∴EM=AM=1-a;
∴E点的坐标为(a;1-a);
∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;
∴AF•BE=1.
故答案为:1.22、略
【分析】【分析】(1)由待定系数法可求得抛物线的解析式.
(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.
∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;
设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.
(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:
(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)
将(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)连接BC;交直线l于点D.
∵点B与点A关于直线l对称;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“两点之间;线段最短”的原理可知:
此时AD+CD最小;点D的位置即为所求.(5分)
设直线BC的解析式为y=kx+b;
由直线BC过点(3;0),(0,3);
得
解这个方程组,得
∴直线BC的解析式为y=-x+3.(6分)
由(1)知:对称轴l为;即x=1.
将x=1代入y=-x+3;得y=-1+3=2.
∴点D的坐标为(1;2).(7分)
说明:用相似三角形或三角函数求点D的坐标也可;答案正确给(2分).
(3)①连接AD.设直线l与x轴的交点记为点E.
由(2)知:当AD+CD最小时;点D的坐标为(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD与⊙A相切.(9分)
②∵另一点D与D(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美食广场服务员工作总结
- 100万吨绿色清洁能源页岩气液化项目可行性研究报告写作模板-申批备案
- 2025-2030全球电池保护板行业调研及趋势分析报告
- 2025年全球及中国工业级4-苯氧基苯酚行业头部企业市场占有率及排名调研报告
- 2025年全球及中国桁架式门式起重机行业头部企业市场占有率及排名调研报告
- 2025年全球及中国AI虚拟人交互一体机行业头部企业市场占有率及排名调研报告
- 2025-2030全球心理情感咨询服务平台行业调研及趋势分析报告
- 2025年全球及中国工业绝热冷却器行业头部企业市场占有率及排名调研报告
- 2025-2030全球重馏分轮胎热解油行业调研及趋势分析报告
- 2025-2030全球消费电子注塑机行业调研及趋势分析报告
- 福建省泉州市晋江市2024-2025学年七年级上学期期末生物学试题(含答案)
- 2025年春新人教版物理八年级下册课件 第十章 浮力 第4节 跨学科实践:制作微型密度计
- 货运车辆驾驶员服务标准化培训考核试卷
- 财务BP经营分析报告
- 三年级上册体育课教案
- 2024高考物理二轮复习电学实验专项训练含解析
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 高中英语:倒装句专项练习(附答案)
- 2025届河北衡水数学高三第一学期期末统考试题含解析
- 2024信息技术数字孪生能力成熟度模型
- 交通银行股份有限公司操作风险管理政策
评论
0/150
提交评论