2025年人教版高一数学上册月考试卷含答案_第1页
2025年人教版高一数学上册月考试卷含答案_第2页
2025年人教版高一数学上册月考试卷含答案_第3页
2025年人教版高一数学上册月考试卷含答案_第4页
2025年人教版高一数学上册月考试卷含答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教版高一数学上册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、设集合A={y|y=a2+1|a∈N},B={y|y=b2+10|b∈N};则A∩B中元素的个数为()

A.1个。

B.2个。

C.3个。

D.大于3个。

2、【题文】已知圆C:从动圆M:上的动点P向圆C引切线,切点分别是E,F,则()A.B.C.D.3、【题文】当时,在同一坐标系中函数与的图象是()4、【题文】集合____。A.B.C.D.(0,+∞)5、下列四个关系式中,正确的是()A.∅∈{a}B.a∉{a,b}C.b⊆{a,b}D.{a}⊆{a,b}6、已知集合A={x|x2-4=0},集合B={x|ax=1},若B⊆A,则实数a的值是()A.0B.C.0或D.0或7、已知直线l的斜率k=2,并且经过一点(2,-3)则直线的点斜式方程为()A.y-3=2(x-2)B.y+3=2(x-2)C.y-2=k(x+3)D.y-2=2(x-3)评卷人得分二、填空题(共6题,共12分)8、【题文】函数y=1-的最大值与最小值的和为____.9、【题文】已知函数f(x)=x2+2︱x︱-15,定义域是值域是[-15,0],则满足条件的整数对有____对.10、【题文】过点(-1,2)的直线l被圆截得的弦长为则直线l的斜率为____.11、已知集合A={(x,y)|x2=y+1,|x|<2,x∈Z},试用列举法表示集合A=______.12、函数f(x)是y=ax+1(a>0且a≠1)的反函数,则函数f(x)恒过定点______.13、如图,已知长方体ABCD-A1B1C1D1中,AB=2AD=2AA1=2,那么DD1和BC1所成的角是______度.评卷人得分三、证明题(共5题,共10分)14、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.15、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.16、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.17、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.18、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.评卷人得分四、计算题(共4题,共8分)19、计算:.20、已知t1、t2是二次函数s=-3t2+6t+f的图象与x轴两交点的横坐标,且x=10t1,y=10t2,那么y与x间的函数关系式为____,其函数图象在第____象限内.21、已知扇形的圆心角为150°,半径为2cm,扇形的面积是____cm2.22、已知:(b-c)2=(a-b)(c-a),且a≠0,则=____.评卷人得分五、综合题(共4题,共20分)23、在直角坐标系xoy中,一次函数的图象与x轴、y轴分别交于点B和点A,点C的坐标是(0,1),点D在y轴上且满足∠BCD=∠ABD.求D点的坐标.24、如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(4;0);与y轴正半轴交于点E(0,4),边长为4的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;

(1)求拋物线的函数表达式;

(2)如图2;若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线与边AB交于点P且同时与边CD交于点Q.设点A的坐标为(m,n)

①当PO=PF时;分别求出点P和点Q的坐标及PF所在直线l的函数解析式;

②当n=2时;若P为AB边中点,请求出m的值;

(3)若点B在第(2)①中的PF所在直线l上运动;且正方形ABCD与抛物线有两个交点,请直接写出m的取值范围.

25、已知平面区域上;坐标x,y满足|x|+|y|≤1

(1)画出满足条件的区域L0;并求出面积S;

(2)对区域L0作一个内切圆M1,然后在M1内作一个内接与此圆与L0相同形状的图形L1,在L1内继续作圆M2;经过无数次后,求所有圆的面积的和.

(提示公式:)26、已知开口向上的抛物线y=ax2+bx+c与x轴交于A(-3;0);B(1,0)两点,与y轴交于C点,∠ACB不小于90°.

(1)求点C的坐标(用含a的代数式表示);

(2)求系数a的取值范围;

(3)设抛物线的顶点为D;求△BCD中CD边上的高h的最大值.

(4)设E,当∠ACB=90°,在线段AC上是否存在点F,使得直线EF将△ABC的面积平分?若存在,求出点F的坐标;若不存在,说明理由.参考答案一、选择题(共7题,共14分)1、B【分析】

由方程a2+1=b2+10,整理化简得出(a+b)(a-b)=9=9×1=3×3=1×9,∵a,b∈N,∴得:a=5,b=4;此时y=26;

或得:a=3,b=0;此时y=10,∴A∩B中元素的个数为2.

故选B.

【解析】【答案】根据交集的定义,得出方程a2+1=b2+10的整数解a,b.再求出公共元素;结合元素的互异性,得出个数即可.

2、A【分析】【解析】

试题分析:根据题意圆C:其圆心为(4,0),半径为2,从动圆M:那么动圆的圆心(4+77),那么可知两个圆心的距离为定值,且为连接两圆心与动圆的交点P,此时满足取得最小值,且为故选A.

考点:本试题考查了直线与圆的位置关系的知识。

点评:对于利用直线与圆相切的问题,一般要用到切线长定理,以及直线与圆的相切时特殊的直角三角形关系,借助于圆心坐标和动点坐标发现规律,两点的距离为定值,来分析最小值。【解析】【答案】A3、A【分析】【解析】略【解析】【答案】A4、D【分析】【解析】略【解析】【答案】D5、D【分析】解:对于A:∅∈{a};空集是任何非集合的真子集,符合用“⊆或⊊”,∴A不对.

对于B:元素与集合的关系是属于或者不属于,二者必选其一.a∈{a,b};∴B不对.

对于C:b与{a,b}是集合与元素之间的关系;符号用“∈”,∴C不对.

对于D:{a}⊆{a,b}是集合与集合的关系;是子集关系.∴D对.

故选D.

根据集合与元素的关系进行判断即可.

本题考查了元素与集合,集合与集合之间的关系判断.属于基础题.【解析】【答案】D6、C【分析】解:∵x2-4=0⇒x=±2;∴A={-2,2};

∵B⊆A;∴B有两种种情况。

1;a=0;B=∅,B⊆A;

2、a≠0,=±2⇒a=±B⊆A;

综上a=0或±.

故选C

通过解方程求出方程的解;用列举法表示出集合A,再分类讨论集合B的情况求a的值.

本题考查集合关系中的参数取值问题.解决这类问题常用分类讨论思想.【解析】【答案】C7、B【分析】解:由点斜式可得方程:y+3=2(x-2);

故选:B.

利用点斜式即可得出.

本题考查了直线的方程求法、点斜式,考查了计算能力,属于基础题.【解析】【答案】B二、填空题(共6题,共12分)8、略

【分析】【解析】令f(x)=

则f(x)为奇函数,

故f(x)max+f(x)min=0,

∴ymax+ymin=2.【解析】【答案】29、略

【分析】【解析】略【解析】【答案】710、略

【分析】【解析】设过点的直线方程为即

由已知得,解得,直线的斜率为或

考点:直线与圆的位置关系,点到直线的距离公式.【解析】【答案】或11、略

【分析】解:∵集合A={(x,y)|x2=y+1;|x|<2,x∈Z};

∴A={(-1;0),(0,-1),(1,0)}.

故答案为:{(-1;0),(0,-1),(1,0)};

利用集合性质直接求解.

本题考查集合的列举法的表示,是基础题,解题时要认真审题,注意列举法的合理运用.【解析】{(-1,0),(0,-1),(1,0)}12、略

【分析】解:∵函数y=ax+1(a>0且a≠1)的图象恒过定点(0;2);

函数f(x)是y=ax+1(a>0且a≠1)的反函数;

∵互为反函数的两个函数的图象关于直线y=x对称;

∴函数f(x)恒过定点(2;0).

故答案为:(2;0).

由指数函数的图象恒过定点(0,1),可得y=ax+1(a>0且a≠1)的图象恒过定点(0;2),结合互为反函数的两个函数的图象之间的关系可得答案.

本题考查了反函数,考查了互为反函数的两个函数图象之间的关系,是基础题.【解析】(2,0)13、略

【分析】解:因为已知长方体ABCD-A1B1C1D1;

所以CC1∥DD1,所以∠DD1和BC1所成的角是BC1C;

又AB=2AD=2AA1=2;

所以tan∠BC1C=

所以∠BC1C=60°;

故答案为:60.

由已知几何体为长方体,所以容易得到∠DD1和BC1所成的角是BC1C;利用直角三角形的三角函数解之.

本题考查了长方体的性质运用以及异面直线所成的角的求法;关键是将空间角转化为平面角.【解析】60三、证明题(共5题,共10分)14、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.15、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.16、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.17、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.18、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.四、计算题(共4题,共8分)19、略

【分析】【分析】求出=2,sin45°=,(3-π)0=1,=4,代入求出即可.【解析】【解答】解:原式=2-4×+1+4;

=2-2+1+4;

=5.20、略

【分析】【分析】由于t1、t2是二次函数s=-3t2+6t+f的图象与x轴两交点的横坐标,利用根与系数的关系可以得到t1+t2=2,又x=10t1,y=10t2,利用同底数幂的乘法法则计算即可解决问题.【解析】【解答】解:∵t1、t2是二次函数s=-3t2+6t+f的图象与x轴两交点的横坐标;

∴t1+t2=2;

而x=10t1,y=10t2;

∴xy=10t1×10t2=10t1+t2=102=100;

∴y=(x>0).

∵100>0;x>0;

∴其函数图象在第一象限内.

故答案为:y=(x>0),一.21、略

【分析】【分析】根据扇形的面积=,直接进行计算即可解答.【解析】【解答】解:根据扇形的面积公式;得

S扇==π(cm2).

故答案为.22、略

【分析】【分析】根据题意将原式变形,然后利用添项法可配成完全平方式,再利用偶次方的非负性即可得出答案.【解析】【解答】解:;

化简:4a2-4a(b+c)+(b+c)2=0,;

即:;

∴=2,则=;

故答案为:.五、综合题(共4题,共20分)23、略

【分析】【分析】先根据一次函数的解析式求出点A及点B的坐标,利用勾股定理解出线段BC、AB的坐标,分一下三种情况进行讨论,(1)若D点在C点上方时,(2)若D点在AC之间时,(3)若D点在A点下方时,每一种情况下求出点D的坐标即可.【解析】【解答】解:∵A;B是直线与y轴、x轴的交点;

令y=0,解得;

∴;

令x=0;解得y=-3;

∴A(0;-3);

由勾股定理得,;

(1)若D点在C点上方时;则∠BCD为钝角;

∵∠BCD=∠ABD;又∠CDB=∠ADB;

∴△BCD∽△ABD;

∴;

设D(0;y),则y>1;

∵;

∴;

∴8y2-22y+5=0;

解得或(舍去);

∴点D的坐标为(0,);

(2)若D点在AC之间时;则∠BCD为锐角;

∵∠ABD=∠BCD;又∠BAD=∠CAB;

∴△ABD∽△ACB,∴;

设D(0,y),则-3<y<1,又;

∴;

整理得8y2-18y-5=0;

解得或(舍去);

∴D点坐标为(0,-);

(3)若D点在A点下方时;有∠BAC=∠ABD+∠ADB>∠ABD;

又显然∠BAC<∠BCD;

∴D点在A点下方是不可能的.

综上所述,D点的坐标为(0,)或(0,-).24、略

【分析】【分析】(1)已知抛物线的对称轴是y轴;顶点是(0,4),经过点(4,0),利用待定系数法即可求得函数的解析式;

(2)①过点P作PG⊥x轴于点G;根据三线合一定理可以求得G的坐标,则P点的横坐标可以求得,把P的横坐标代入抛物线的解析式,即可求得纵坐标,得到P的坐标,再根据正方形的边长是4,即可求得Q的纵坐标,代入抛物线的解析式即可求得Q的坐标,然后利用待定系数法即可求得直线PF的解析式;

②已知n=2;即A的纵坐标是2,则P的纵坐标一定是2,把y=2代入抛物线的解析式即可求得P的横坐标,根据AP=2,且AP∥y轴,即可得到A的横坐标,从而求得m的值;

(3)假设B在M点时,C在抛物线上或假设当B点在N点时,D点同时在抛物线上时,求得两个临界点,当B在MP和FN之间移动时,抛物线与正方形有两个交点.【解析】【解答】解:(1)由抛物线y=ax2+c经过点E(0;4),F(4,0)

,解得;

∴y=-x2+4;

(2)①过点P作PG⊥x轴于点G;

∵PO=PF∴OG=FG

∵F(4;0)∴OF=4

∴OG=OF=×4=2;即点P的横坐标为2

∵点P在抛物线上。

∴y=-×22+4=3;即P点的纵坐标为3

∴P(2;3)

∵点P的纵坐标为3;正方形ABCD边长是4,∴点Q的纵坐标为-1

∵点Q在抛物线上,∴-1=-x2+4

∴x1=2,x2=-2(不符题意;舍去)

∴Q(2;-1)

设直线PF的解析式是y=kx+b;

根据题意得:;

解得:,

则直线的解析式是:y=-x+6;

②当n=2时;则点P的纵坐标为2

∵P在抛物线上,∴2=-x2+4

∴x1=2,x2=-2

∴P的坐标为(2,2)或(-2;2)

∵P为AB中点∴AP=2

∴A的坐标为(2-2,2)或(-2-2;2)

∴m的值为2-2或-2-2;

(3)假设B在M点时;C在抛物线上,A的横坐标是m,则B的横坐标是m+4;

代入直线PF的解析式得:y=-(m+4)+6=-m;

则B的纵坐标是-m,则C的坐标是(m+4,-m-4).

把C的坐标代入抛物线的解析式得:-m-4=-(m+4)2+4,解得:m=-1-或-1+(舍去);

当B在E点时;AB经过抛物线的顶点,则E的纵坐标是4;

把y=4代入y=-x+6,得4=-x+6,解得:x=;

此时A的坐标是(-,4),E的坐标是:(;4),此时正方形与抛物线有3个交点.

当点B在E点时,正方形与抛物线有两个交点,此时-1-<m<-;

当点B在E和P点之间时,正方形与抛物线有三个交点,此时:-<x<-2;

当B在P点时;有两个交点;

假设当B点在N点时;D点同时在抛物线上时;

同理,C的坐标是(m+4,-m-4),则D点的坐标是:(m,-m-4);

把D的坐标代入抛物线的解析式得:-m-4=-m2+4,解得:m=3+或3-(舍去);

当B在F与N之间时,抛物线与正方形有两个交点.此时0<m<3+.

故m的范围是:-1-<m-或m=2或0<m<3+.25、略

【分析】【分析】(1)根据绝对值的性质去掉绝对值号,作出|x|+|y|≤1的线性规划区域即可得到区域L0;然后根据正方形的面积等于对角线乘积的一半进行求解即可;

(2)求出M1、M2的面积,然后根据求解规律,后一个圆得到面积等于前一个圆的面积的,然后列式,再根据等比数列的求和公式求解即可.【解析】【解答】解:(1)如图;|x|+|y|≤1可化为;

x+y≤1;x-y≤,-x+y≤1,-x-y≤1;

∴四边形ABCD就是满足条件的区域L0是正方形;

S=×AC×BD=×(1+1)×(1+1)=2;

(2)如图;∵A0=1;

∴⊙M1的半径为:1×sin45°=;

∴内切圆M1的面积是:π()2=π;

同理可得:⊙M2的半径为:×sin45°=()2;

∴内切圆M2的面积是:π[()2]2=π×=π()2;

⊙M3的半径为:()2×sin45°=()3;

内切圆M3的面积是:π[()3]2=π×()2=π()3;

以此类推,经过n次后,⊙Mn的面积为π()n;

∴所有圆的面积的和=π+π()2+π()3++π()n==π[1-()n].

故答案为:(1)2,(2)π[1-()n].26、略

【分析】【分析】(1)由抛物线y=ax2+bx+c过点A(-3;0),B(1,0),得出c与a的关系,即可得出C点坐标;

(2)利用已知得出△AOC∽△COB;进而求出OC的长度,即可得出a的取值范围;

(3)作DG⊥y轴于点G,延长DC交x轴于点H,得出抛物线的对称轴为x=-1,进而求出△DCG∽△HCO,得出OH=3,过B作BM⊥DH,垂足为M,即BM=h,根据h=HBsin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤;即可求出答案;

(4)连接CE,过点N

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论