2025年人教A新版高二数学下册月考试卷_第1页
2025年人教A新版高二数学下册月考试卷_第2页
2025年人教A新版高二数学下册月考试卷_第3页
2025年人教A新版高二数学下册月考试卷_第4页
2025年人教A新版高二数学下册月考试卷_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教A新版高二数学下册月考试卷191考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共9题,共18分)1、不等式的解集是()

A.(0;3)

B.(-∞;0)

C.(3;+∞)

D.(-∞;0)∪(0,+∞)

2、已知函数f(x)的导函数f′(x)的图象如图所示;那么()

A.-1是函数f(x)的极小值点。

B.1是函数f(x)的极大值点。

C.2是函数f(x)的极大值点。

D.函数f(x)有两个极值点。

3、已知圆直线则圆C内任意一点到直线的距离小于的概率为()A.B.C.D.4、抛物线的焦点坐标为().A.B.C.D.5、复数等于()A.B.C.D.6、【题文】若不等式的解集为则值是()A.-10B.-14C.10D.147、””是”复数为纯虚数”的()A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分也不必要条件8、“函数f(x)在x0处取得极值”是“f′(x0)=0“的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分又非必要条件9、直线x+3y鈭�2=0

被圆(x鈭�1)2+y2=1

截得的线段的长为(

)

A.5

B.2

C.6

D.3

评卷人得分二、填空题(共5题,共10分)10、要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为.(以数字作答)11、如图展示了一个由区间(0;1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A;B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③.图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.

给出下列命题:①f()=1;②f(x)是奇函数;③f(x)在定义域上单调递增,则所有真命题的序号是____.(填出所有真命题的序号)12、设函数该曲线以点处的切线平行于直线则该曲线的切线方程.13、点(1,-1)到直线3x-4y+3=0的距离是______.14、如果3<a<5,复数z=(a2-8a+15)+(a2-5a-14)i在复平面上的对应点a在______象限.评卷人得分三、作图题(共7题,共14分)15、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

16、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)17、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)18、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

19、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)20、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)21、分别画一个三棱锥和一个四棱台.评卷人得分四、计算题(共2题,共8分)22、如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.23、已知a为实数,求导数评卷人得分五、综合题(共4题,共32分)24、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.

(1)求抛物线的解析式;

(2)求当AD+CD最小时点D的坐标;

(3)以点A为圆心;以AD为半径作⊙A.

①证明:当AD+CD最小时;直线BD与⊙A相切;

②写出直线BD与⊙A相切时,D点的另一个坐标:____.25、(2015·安徽)设椭圆E的方程为+=1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足=2直线OM的斜率为26、已知Sn为等差数列{an}的前n项和,S6=51,a5=13.27、已知f(x)=logax(a>0,a≠1),设数列f(a1),f(a2),f(a3),,f(an)是首项为4,公差为2的等差数列.参考答案一、选择题(共9题,共18分)1、A【分析】

因为所以解得x∈(0,3).

故选A.

【解析】【答案】由题意直接判断的符号;然后求解即可.

2、C【分析】

根据函数f(x)的导函数f′(x)的图象可知f′(-1)=0;f′(2)=0

但当x<-1时;f′(x)>0,-1<x<2时,f′(x)>0,x>2时,f′(x)<0

∴-1不是极值点;2是函数f(x)的极大值点。

故选C.

【解析】【答案】根据函数f(x)的导函数f′(x)的图象可知f′(-1)=0;f′(2)=0,然后判定-1,2处附近的导数符号,根据极值的定义进行判定即可.

3、D【分析】【解析】试题分析:在直线与之间且在圆内的点到直线的距离都小于这些点形成的面积为所以所求的概率为故选D。考点:几何概型的概率;点到直线的距离。【解析】【答案】D4、D【分析】【解析】试题分析:抛物线化为其焦点为故选D。考点:抛物线的性质【解析】【答案】D5、D【分析】【解析】

因为选D【解析】【答案】D6、A【分析】【解析】解:因为不等式的解集为

选A【解析】【答案】A7、B【分析】【解答】b=0时,为0,表示纯虚数,因此,是复数为纯虚数的“必要条件但不是充分条件”,选B。8、A【分析】解:若“函数f(x)在x0处取得极值”,根据极值的定义可知“f′(x0)=0”成立,反之,“f′(x0)=0”,还应在导数为0的左右附近改变符号时,“函数f(x)在x0处取得极值”.

故选A.

根据极值的定义可知,前者是后者的充分条件若“f′(x0)=0”,还应在导数为0的左右附近改变符号时,“函数f(x)在x0处取得极值”.故可判断.

本题以函数为载体,考查极值的定义,属于基础题.【解析】【答案】A9、D【分析】解:圆(x鈭�1)2+y2=1

的圆心到直线x+3y鈭�2=0

的距离为11+3=12

隆脿

直线x+3y鈭�2=0

被圆(x鈭�1)2+y2=1

所截得的弦长为21鈭�14=3

故选:D

求出圆心到直线x+3y鈭�2=0

的距离;再利用勾股定理,即可求得弦长.

本题考查直线与圆的位置关系,考查点到直线的距离公式,属于中档题.【解析】D

二、填空题(共5题,共10分)10、略

【分析】试题分析:英语排列的方法有种情况,则英语排课的情况有种情况,剩下的进行全排列即可所以共有种情况所以不同的排法种数有考点:排列组合.【解析】【答案】28811、略

【分析】

①如图,因为M在以(1,1-)为圆心,1-)为半径的圆上运动,当m=时.M的坐标为(-1-);直线AM与x轴交于负半轴,交点的横坐标为负值,直线AM方程y=x+1;

所以点N的坐标为(-1,0),故f()=-1;即①错。

②对于②因为实数m所在区间(0;1)不关于原点对称,所以f(x)不存在奇偶性.故②错.

③是正确命题;由图③可以看出,m由0增大到1时,M由A运动到B,此时N由x的负半轴向正半轴运动,由此知,N点的横坐标逐渐变大,故f(x)在定义域上单调递增是正确的;

故答案为:③

【解析】【答案】①可以求出直线AM方程;求出n,判断①是否正确.

②在有实数m所在区间(0;1)不关于原点对称,知②错。

③可由图③;由M的运动规律观察出函数值的变化,得出单调性;

12、略

【分析】【解析】

因为设切点为利用点斜式方程得到为【解析】【答案】13、略

【分析】解:点(1,-1)到直线3x-4y+3=0的距离d==2.

故答案为:2.

利用点到直线的距离公式即可得出.

本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.【解析】214、略

【分析】解:∵3<a<5,a2-8a+15=(a-3)(a-5)<0,a2-5a-14=(a+2)(a-7)<0;所以复数在复平面上的对应点a在第三象限.

故答案为:三.

复数在复平面上的对应点a在第几象限;考查它的实部和虚部即可.

本题考查复数代数表示法及其几何意义,是基础题常考题.【解析】三三、作图题(共7题,共14分)15、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

16、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.17、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.18、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

19、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.20、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.21、解:画三棱锥可分三步完成。

第一步:画底面﹣﹣画一个三角形;

第二步:确定顶点﹣﹣在底面外任一点;

第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.

画四棱可分三步完成。

第一步:画一个四棱锥;

第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;

第三步:将多余线段擦去.

【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、计算题(共2题,共8分)22、略

【分析】【分析】作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.【解析】【解答】解:如图;作点B关于AC的对称点E,连接EP;EB、EM、EC;

则PB+PM=PE+PM;

因此EM的长就是PB+PM的最小值.

从点M作MF⊥BE;垂足为F;

因为BC=2;

所以BM=1,BE=2=2.

因为∠MBF=30°;

所以MF=BM=,BF==,ME==.

所以PB+PM的最小值是.23、解:【分析】【分析】由原式得∴五、综合题(共4题,共32分)24、略

【分析】【分析】(1)由待定系数法可求得抛物线的解析式.

(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.

∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;

设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.

(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:

(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)

将(0;3)代入上式,得3=a(0+1)(0-3).

解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).

即y=-x2+2x+3.(3分)

(2)连接BC;交直线l于点D.

∵点B与点A关于直线l对称;

∴AD=BD.(4分)

∴AD+CD=BD+CD=BC.

由“两点之间;线段最短”的原理可知:

此时AD+CD最小;点D的位置即为所求.(5分)

设直线BC的解析式为y=kx+b;

由直线BC过点(3;0),(0,3);

解这个方程组,得

∴直线BC的解析式为y=-x+3.(6分)

由(1)知:对称轴l为;即x=1.

将x=1代入y=-x+3;得y=-1+3=2.

∴点D的坐标为(1;2).(7分)

说明:用相似三角形或三角函数求点D的坐标也可;答案正确给(2分).

(3)①连接AD.设直线l与x轴的交点记为点E.

由(2)知:当AD+CD最小时;点D的坐标为(1,2).

∴DE=AE=BE=2.

∴∠DAB=∠DBA=45度.(8分)

∴∠ADB=90度.

∴AD⊥BD.

∴BD与⊙A相切.(9分)

②∵另一点D与D(1;2)关于x轴对称;

∴D(1,-2).(11分)25、(1){#mathml#}255

{#/mathml#};(2){#mathml#}x245+y29=1

{#/mathml#}【分析】【解答】1、由题设条件知,点M的坐标为(),又Kom=从而=进而得a=c==2b,故e==

2、由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为(-),设点N关于直线AB的对称点S的坐标为(x1,),则线段NS的中点T的坐标为()又点T在直线AB上,且KNSKAB=-1从而可解得b=3,所以a=故圆E的方程为

【分析】椭圆一直是解答题中考查解析几何知识的重要载体,不管对其如何进行改编与设计,抓住基础知识,考基本技能是不变的话题,解析几何主要研究两类问题:一是根据已知条件确定曲线方程,二是利用曲线方程研究曲线的几何性质,曲线方程的确定可分为两类,可利用直接法,定义法,相关点法等求解26、【解答】(1)设等差数列{an}的公差为d;则。

∵S6=51,

∴{#mathml#}12×6

{#/mathml#}×(a1+a6)=51;

∴a1+a6=17;

∴a2+a5=17,

∵a5=13,∴a2=4,

∴d=3,

∴an=a2+3(n﹣2)=3n﹣2;

(2)bn={

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论