版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市文化武术学校2021年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.的值为()A. B. C. D.参考答案:C试题分析:.考点:诱导公式2.下列四组函数,表示同一函数的是()A.f(x)=,g(x)=x
B.f(x)=x,g(x)=C.f(x)=,g(x)=D.f(x)=|x+1|,g(x)=参考答案:D3.数列{an}为等差数列,a1,a2,a3为等比数列,a5=1,则a10=()A.5B.﹣1C.0D.1参考答案:D【考点】等差数列的通项公式.【分析】根据题意,得出a1=a3=a2,数列{an}是常数列;由此求出a10的值.【解答】解:根据题意,得,∴a1?a3=,整理,得=0;∴a1=a3,∴a1=a3=a2;∴数列{an}是常数列,又a5=1,∴a10=1.故选:D.4.满足{x|x2-3x+2=0}M{x∈N|0<x<6}的集合M的个数为(
)
A、2
B、4
C、6
D、8参考答案:C5.若函数,则=(
)A.lg101
B.2
C.1
D.0参考答案:B6.在△ABC中,已知a2=b2+c2+bc,则角A为()A. B. C. D.或参考答案:C【考点】HR:余弦定理.【分析】根据余弦定理表示出cosA,然后把已知的等式代入即可求出cosA的值,由A的范围,根据特殊角的三角函数值即可得到A的度数.【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C7.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是()A.α∥β,l?α,n?β?l∥n B.α∥β,l?α?l⊥βC.l⊥n,m⊥n?l∥m D.l⊥α,l∥β?α⊥β参考答案:D【考点】空间中直线与平面之间的位置关系.【分析】A根据面面平行的性质进行判断.
B根据面面平行的性质以及线面垂直的判定定理进行判断.C根据直线垂直的性质进行判断.
D根据线面垂直和平行的性质进行判断.【解答】解:对于A,α∥β,l?α,n?β,l,n平行或异面,所以错误;对于B,α∥β,l?α,l与β可能相交可能平行,所以错误;对于C,l⊥n,m⊥n,在空间,l与m还可能异面或相交,所以错误.故选D.8.下面是六届奥运会中国获得金牌的一览表.第24届汉城第25届巴塞罗那第26届亚特兰大第27届悉尼第28届雅典第29届北京5块16块16块28块32块51块在5,16,16,28,32,51这组数据中,众数和中位数分别是(
)A.16,16
B.16,28
C.16,22
D.51,16参考答案:C9.设,,则“”是“”的(
)A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件参考答案:C不能推出,反过来,若则成立,故为必要不充分条件.10.有如下四个游戏盘,撒一粒黄豆,若落在阴影部分,怎可以中奖,小明希望中奖,则他应该选择的游戏是参考答案:A四个游戏盘中奖的概率分别是,最大的是,故选A二、填空题:本大题共7小题,每小题4分,共28分11.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.6875)<0,即可得出方程的一个近似解为________(精确度0.1).参考答案:略12.函数的零点有__________个参考答案:1解:由题意得:,即,而:单调递增,单调递减,根据图像性质可知如果此两函数有交点,那也只有一个,也就是:至多有一个零点,,所以,所以:函数有一个零点.13.当α是锐角时,(sinα+tanα)(cosα+cotα)的值域是
。参考答案:(2,+]14.=.参考答案:﹣4【考点】三角函数的化简求值.【分析】切化弦后通分,利用二倍角的正弦与两角差的正弦即可化简求值.【解答】解:原式====﹣4.故答案为:﹣4.15.若实数a,b满足,,则的取值范围是__________.参考答案:,,故答案为.16.设△ABC的内角A,B,C所对边的长分别为a,b,c.若,2sinA=3sinC,则_____.参考答案:-∵,∴由正弦定理,可得2a=3c,∴a=∵b+c=2a,∴b=∴cosB==﹣
17.已知,则f(x)=
。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)已知,,且、都是第二象限角,求的值.(2)求证:.参考答案:(1);(2)见解析【分析】(1)利用同角三角函数间的关系式的应用,可求得cosα,sinβ,再利用两角差的正弦、余弦与正切公式即可求得cos(α﹣β)的值.(2)利用切化弦结合二倍角公式化简即可证明【详解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得证【点睛】本题考查两角和与差的正弦、余弦与正切,考查同角三角函数间的关系式的应用,属于中档题.19.执行如图所示的程序框图,当输入n=10,求其运行的结果.参考答案:【考点】程序框图.【专题】计算题;图表型;数形结合;算法和程序框图.【分析】模拟执行程序框图,可得:n=10时,S=1+2+3+…+10,利用等差数列的求和公式即可计算得解.【解答】解:模拟执行程序框图,可得:n=10时,S=1+2+3+…+10=55.【点评】本题主要考查了循环结构的程序框图,考查了等差数列的求和公式的应用,属于基础题.20.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案:【考点】解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,∵sinC≠0,sin(A+B)=sinC∴cosC=,又0<C<π,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab?,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.21.设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8,求t的取值范围.参考答案:【考点】二次函数在闭区间上的最值;二次函数的性质.【专题】综合题.【分析】(1)若t=1,则f(x)=(x﹣1)2+1,根据二次函数在[0,4]上的单调性可求函数的值域(2)由题意可得函数在区间[a,a+2]上,[f(x)]max≤5,分别讨论对称轴x=t与区间[a,a+2]的位置关系,进而判断函数在该区间上的单调性,可求最大值,进而可求a的范围(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8等价于M﹣m≤8,结合二次函数的性质可求【解答】解:因为f(x)=x2﹣2tx+2=(x﹣t)2+2﹣t2,所以f(x)在区间(﹣∞,t]上单调减,在区间[t,+∞)上单调增,且对任意的x∈R,都有f(t+x)=f(t﹣x),(1)若t=1,则f(x)=(x﹣1)2+1.①当x∈[0,1]时.f(x)单调减,从而最大值f(0)=2,最小值f(1)=1.所以f(x)的取值范围为[1,2];②当x∈[1,4]时.f(x)单调增,从而最大值f(4)=10,最小值f(1)=1.所以f(x)的取值范围为[1,10];所以f(x)在区间[0,4]上的取值范围为[1,10].
…(2)“对任意的x∈[a,a+2],都有f(x)≤5”等价于“在区间[a,a+2]上,[f(x)]max≤5”.①若t=1,则f(x)=(x﹣1)2+1,所以f(x)在区间(﹣∞,1]上单调减,在区间[1,+∞)上单调增.②当1≤a+1,即a≥0时,由[f(x)]max=f(a+2)=(a+1)2+1≤5,得﹣3≤a≤1,从而0≤a≤1.③当1>a+1,即a<0时,由[f(x)]max=f(a)=(a﹣1)2+1≤5,得﹣1≤a≤3,从而﹣1≤a<0.综上,a的取值范围为区间[﹣1,1].
…(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,所以“对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8”等价于“M﹣m≤8”.①当t≤0时,M=f(4)=18﹣8t,m=f(0)=2.由M﹣m=18﹣8t﹣2=16﹣8t≤8,得t≥1.从而t∈?.②当0<t≤2时,M=f(4)=18﹣8t,m=f(t)=2﹣t2.由M﹣m=18﹣8t﹣(2﹣t2)=t2﹣8t+16=(t﹣4)2≤8,得4﹣2≤t≤4+2.从而
4﹣2≤t≤2.③当2<t≤4时,M=f(0)=2,m=f(t)=2﹣t2.由M﹣m=2﹣(2﹣t2)=t2≤8,得﹣2≤t≤2.从而2<t≤2.④当t>4时,M=f(0)=2,m=f(4)=18﹣8t.由M﹣m=2﹣(18﹣8t)=8t﹣16≤8,得t≤3.从而t∈?.综上,t的取值范围为区间[4﹣2,2].
…【点评】本题主要考查了二次函数闭区间上的最值的求解,解题的关键是确定二次函数的对称轴与所给区间的位置关系,体现了分类讨论思想的应用.22.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.(1)判断下列函数x=g(t)是不是函数y=f(x)的一个等值域变换?说明你的理由;①f(x)=log2x,x>0,x=g(t)=t+,t>0;②f(x)=x2﹣x+1,x∈R,x=g(t)=2t,t∈R.(2)设f(x)=log2x的定义域为x∈[2,8],已知x=g(t)=是y=f(x)的一个等值域变换,且函数y=f[g(t)]的定义域为R,求实数m、n的值.参考答案:【考点】函数与方程的综合运用.【分析】(1)在①中,函数y=f(x)的值域为R,函数y=f[g(t)]的值域是(0,+∞);在②中,f(x)的值域为,y=f[g(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省宁德市中考语文模拟试卷三套【附参考答案】
- 2024年精简版:高端装备零部件采购与技术支援合同
- 2024年度艺术品抵押贷款艺术品展览展示合同3篇
- 2024殡仪馆殡葬服务协议书
- 个人信贷简易协议样式 2024年规范版
- 精神科重大意外伤害事故护理急救工作规定
- 福建省南平市武夷山第二中学高二物理下学期期末试题含解析
- 福建省南平市外屯中学高二物理测试题含解析
- 2024年苗木种植土地租赁与品牌授权使用合同3篇
- 13 万里一线牵(说课稿)-2023-2024学年统编版道德与法治三年级下册
- 《低压电工技术》课程标准
- 22G101系列图集常用点全解读
- (国家基本公共卫生服务项目第三版)7高血压患者健康管理服务规范
- 12 富起来到强起来 精神文明新风尚(说课稿)-部编版道德与法治五年级下册
- (43)-7.2羊肚菌高效栽培
- 中级消防维保理论考试试题题库及答案
- 读书会熵减华为活力之源
- 竣工图绘制规范及标准
- 二年级上学期数学
- GB/T 37433-2019低功率燃油燃烧器通用技术要求
- GB/T 3098.5-2000紧固件机械性能自攻螺钉
评论
0/150
提交评论