下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页湖北汽车工业学院
《立体构成》2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉中,以下哪种方法常用于图像的语义分割中的多尺度特征融合?()A.特征金字塔B.空洞卷积C.注意力机制D.以上都是2、计算机视觉在卫星遥感图像分析中的应用可以帮助监测地球环境和资源。假设要通过卫星图像分析森林的覆盖面积变化。以下关于计算机视觉在卫星遥感中的描述,哪一项是不准确的?()A.可以通过图像分类和分割技术区分森林、草地和建筑物等不同地物类型B.能够对多时相的卫星图像进行比较,监测森林的生长和砍伐情况C.计算机视觉在卫星遥感中的应用不受卫星图像的分辨率和光谱信息的限制D.可以结合地理信息系统(GIS)数据,进行更深入的空间分析和决策支持3、在计算机视觉的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)特征是一种经典的方法。假设我们要对一组包含不同视角和缩放比例的物体图像进行匹配,SIFT特征的哪个特性使其在这种情况下表现出色?()A.对旋转和尺度变化具有不变性B.计算速度快,效率高C.特征维度低,易于存储和处理D.对光照变化不敏感4、在计算机视觉的行人重识别任务中,即在不同摄像头拍摄的图像中识别出同一个行人,假设行人的姿态和服装发生了较大变化,以下哪种特征可能具有更强的鲁棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于颜色特征的描述D.基于形状特征的描述5、在计算机视觉中,图像分类是一项基础任务。假设我们有一组包含各种动物的图像数据集,需要训练一个模型来准确区分不同的动物类别。在选择图像分类模型时,以下哪种模型架构通常在处理大规模图像数据集时表现出色?()A.传统的机器学习算法,如支持向量机(SVM)B.浅层的卷积神经网络(CNN)C.深度卷积神经网络,如ResNetD.循环神经网络(RNN)6、当进行视频中的动作识别时,假设要分析一段运动员训练的视频,识别出其中的各种动作,如跑步、跳跃和举重等。视频中的动作可能存在速度变化、遮挡和视角变化等问题。为了准确识别这些动作,以下哪种技术是关键的?()A.对每一帧图像进行独立的动作分类,然后综合结果B.利用光流信息来捕捉视频中的运动模式C.只关注视频中的关键帧,忽略其他帧D.不考虑视频的时序信息,将其视为一系列独立的图像7、在计算机视觉的实际应用中,模型的实时性是一个重要的考虑因素。以下关于实时性的描述,不正确的是()A.对于一些需要实时响应的应用,如自动驾驶和工业检测,模型的处理速度至关重要B.模型的复杂度、计算资源和算法效率都会影响实时性C.可以通过模型压缩、硬件加速和优化算法等方法来提高模型的实时性D.实时性只与模型本身有关,与硬件设备和系统架构无关8、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设我们要估计一个机器人手臂的姿态,以下哪种技术通常被用于获取准确的姿态信息?()A.基于视觉标记的姿态估计B.基于深度学习的姿态估计C.基于几何约束的姿态估计D.基于惯性测量单元(IMU)的姿态估计9、在计算机视觉的目标识别任务中,假设目标物体被部分遮挡,以下哪种模型架构可能更有助于恢复被遮挡部分的信息?()A.多层感知机(MLP)B.卷积神经网络(CNN)C.循环神经网络(RNN)D.注意力机制(AttentionMechanism)10、在三维计算机视觉中,重建物体的三维形状是一个重要任务。假设要从多视角的图像中重建一个建筑物的三维模型,以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法能够直接从两张图像中准确重建出物体的三维形状B.结构光方法在室外环境中比在室内环境中更适用C.多视图几何和深度学习相结合的方法可以提高三维重建的精度和完整性D.三维重建的结果不受图像拍摄角度和距离的影响11、在计算机视觉中,目标检测是一项重要任务。假设要在一张包含多种物体的图像中准确检测出汽车的位置和类别。以下关于目标检测算法的描述,正确的是:()A.传统的基于特征提取和分类器的方法在复杂场景下检测效果优于深度学习方法B.深度学习中的FasterR-CNN算法通过生成候选区域和分类回归,能够实现高精度的目标检测C.目标检测算法只关注物体的外观特征,不考虑物体之间的空间关系D.所有的目标检测算法对于小目标的检测都具有同样出色的性能12、计算机视觉中的图像去噪旨在去除图像中的噪声,恢复清晰的图像。假设要处理一张受到严重噪声污染的天文图像,以下关于去噪算法的选择,哪一项是需要谨慎考虑的?()A.选择基于滤波的去噪算法,如中值滤波B.采用基于深度学习的去噪算法,如自编码器C.只考虑去噪效果,不关心图像细节的保留D.根据噪声的类型和强度选择合适的去噪算法13、计算机视觉中的场景理解是一项具有挑战性的任务。假设要理解一个城市街道的场景图像,包括道路、建筑物、车辆和行人等元素。以下关于场景理解方法的描述,正确的是:()A.基于语义分割的方法能够将图像中的每个像素分类为不同的场景元素,但无法提供元素之间的关系B.目标检测结合语义分割可以实现对场景的初步理解,但对于复杂的场景结构难以准确描述C.基于图模型的方法能够很好地表示场景元素之间的关系,但建模过程复杂,计算量大D.场景理解只需要对图像中的可见元素进行分析,不需要考虑潜在的语义信息14、在进行计算机视觉的三维重建时,需要从多个视角的图像中恢复物体的三维形状和结构。假设要对一个复杂的古建筑进行三维重建,图像采集存在视角偏差和部分遮挡。以下哪种三维重建方法在处理这种不完整和有噪声的数据时效果较好?()A.基于立体视觉的重建B.基于运动恢复结构(SfM)的重建C.基于激光扫描的重建D.基于深度学习的重建15、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设要检测生产线上的零件是否存在缺陷,以下关于工业检测中的计算机视觉应用的描述,哪一项是不正确的?()A.可以使用机器视觉系统对零件进行实时检测,快速发现缺陷B.深度学习模型能够自动学习正常零件和缺陷零件的特征差异,实现准确的缺陷检测C.工业检测中的计算机视觉系统需要具备高度的准确性和稳定性,能够适应不同的生产环境D.计算机视觉在工业检测中只能检测外观缺陷,对于零件的内部结构和性能无法进行评估16、计算机视觉中的图像修复是填补图像中的缺失或损坏部分。假设我们有一张老照片,其中部分区域被损坏,需要进行修复。以下哪种图像修复方法能够生成自然、合理的内容,与周围区域融合良好?()A.基于纹理合成的修复方法B.基于插值和填充的修复方法C.基于深度学习的图像修复网络,如ContextEncoderD.基于图像分解和重构的修复方法17、图像分割是将图像分成不同的区域,每个区域具有相似的特征。假设要对医学图像进行器官分割,以下关于图像分割方法的描述,哪一项是不正确的?()A.基于阈值的分割方法简单直接,但对于复杂图像效果往往不佳B.基于边缘检测的分割方法通过寻找图像中的边缘来划分区域,但容易受到噪声影响C.基于深度学习的语义分割方法能够实现像素级别的分类,效果较好,但计算量较大D.图像分割只适用于灰度图像,对于彩色图像无法进行有效的分割18、在计算机视觉中,图像检索是根据用户的需求从图像数据库中查找相关的图像。以下关于图像检索的说法,错误的是()A.图像检索可以基于图像的内容,如颜色、形状和纹理等特征B.深度学习方法可以学习到更具语义的图像表示,提高图像检索的准确性C.图像检索在电子商务、数字图书馆和图像搜索引擎等领域有广泛的应用D.图像检索的性能只取决于图像特征的提取,与数据库的组织和索引无关19、计算机视觉在文物保护和数字化中的应用可以帮助记录和分析文物信息。假设要对一件古老的雕塑进行三维数字化和表面纹理分析,以下关于文物保护计算机视觉应用的描述,正确的是:()A.传统的摄影测量方法在文物数字化中比基于深度学习的方法更精确B.文物的复杂形状和表面材质对数字化和分析过程没有挑战C.结合多种成像技术和计算机视觉算法能够更全面地获取文物的信息D.文物保护中的计算机视觉应用不需要考虑对文物的非接触性和无损性要求20、在计算机视觉中,以下哪种方法常用于图像的显著目标检测中的高层语义信息利用?()A.深度学习B.图模型C.注意力机制D.以上都是21、在计算机视觉的图像分类任务中,假设要处理类别不均衡的数据集,即某些类别的样本数量远远少于其他类别。以下关于处理类别不均衡的方法描述,正确的是:()A.直接使用传统的分类算法,类别不均衡不会对结果产生明显影响B.过采样少数类别的样本可以增加其数量,但可能导致过拟合C.欠采样多数类别的样本能够平衡数据集,但会丢失部分有用信息D.类别不均衡问题无法通过数据处理方法解决,只能通过改进分类算法来应对22、在计算机视觉的视频监控系统中,异常事件检测是重要功能之一。假设要在一个仓库的监控视频中检测出异常的人员活动或物品移动。以下哪种异常事件检测方法在处理这种大规模视频数据时能够更有效地发现异常?()A.基于规则的检测B.基于统计模型的检测C.基于深度学习的检测D.基于人工观察的检测23、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和功能,例如判断是办公室还是客厅。以下哪种信息对于准确理解场景是至关重要的?()A.物体的类别和位置B.图像的颜色分布C.图像的拍摄角度D.随机选择图像中的部分区域进行分析24、图像分类是计算机视觉的基础任务之一。假设要对大量的自然风景图片进行分类,包括山脉、森林、海滩等不同类型,同时图片可能存在不同的拍摄角度、光照条件和季节变化。为了能够准确地对这些图片进行分类,以下哪种特征提取方法与分类算法的组合最为有效?()A.SIFT特征+支持向量机B.HOG特征+决策树C.卷积神经网络自动提取特征+深度学习分类器D.颜色直方图特征+朴素贝叶斯25、在计算机视觉的图像增强处理中,目的是改善图像的质量和可读性。假设我们要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,哪一项是不正确的?()A.直方图均衡化可以通过调整图像的灰度分布,增强图像的对比度B.基于Retinex理论的方法可以分离图像的光照和反射成分,从而改善图像的视觉效果C.图像增强算法可以在不增加噪声的情况下,显著提高图像的亮度和清晰度D.不同的图像增强方法适用于不同类型的图像,需要根据具体情况选择合适的方法二、简答题(本大题共4个小题,共20分)1、(本题5分)说明计算机视觉在智能图书馆中的应用。2、(本题5分)解释计算机视觉中的模型剪枝技术。3、(本题5分)说明计算机视觉在指纹识别中的方法。4、(本题5分)简述图像的对比度调整方法。三、分析题(本大题共5个小题,共25分)1、(本题5分)剖析某艺术展览的宣传视频设计,讨论其如何通过视觉效果和解说词展示展览的魅力和艺术价值。2、(本题5分)分析某品牌的电商店铺首页设计,研究其在布局、色彩、商品展示等方面如何提高用户的购买转化率。3、(本题5分)以一个旅游城市的城市形象宣传片设计为例,分析其如何运用视觉和音频元素展示城市魅力和吸引游客。4、(本题5分)某
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:教师教育神经科学素养的模型构建与提升路径
- 2025年度个人协议合同范文汇编及法律适用指南4篇
- 医院2025年度消防安全管理合同2篇
- 二零二五年度卖房资金垫付及管理协议4篇
- 腾讯2025年度企业邮箱迁移服务合同2篇
- 二零二五版高端奶粉品牌加盟管理合同范本页2
- 二零二五年度城市公共自行车系统维护与升级合同4篇
- 2025年度劳动合同试用期加班费及休息休假规定3篇
- 个人商品运输合同范本锦集
- 二零二五年度临时工工资支付合同模板
- 加强教师队伍建设教师领域学习二十届三中全会精神专题课
- 2024-2025学年人教版数学七年级上册期末复习卷(含答案)
- 2024年决战行测5000题言语理解与表达(培优b卷)
- 四年级数学上册人教版24秋《小学学霸单元期末标准卷》考前专项冲刺训练
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- (完整版)减数分裂课件
- 银行办公大楼物业服务投标方案投标文件(技术方案)
- 第01讲 直线的方程(九大题型)(练习)
- 微粒贷逾期还款协议书范本
- 人教版七年级上册数学全册课时练习带答案
- NBT 47013.4-2015 承压设备无损检测 第4部分:磁粉检测
评论
0/150
提交评论