下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市水南中学2021-2022学年高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若随机变量,且,则的值是()A.
B.
C.
D.参考答案:C略2.在高20m的楼顶测得对面一塔顶的仰角为60°,塔基的俯角为45°,则这座塔的高度为().a.m
b.mc.m
d.m参考答案:B如图所示,则AE=DE=AB=20m,∴CE=AEtan60°=m,∴CD=CE+ED=m.3.设,则的反函数=(
)(A)1+
(B)
(C)-1+
(D)1-
参考答案:C略4.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(
)A.. B.
C..
D.参考答案:D5.已知:,则下列关系一定成立的是(
)A.A,B,C三点共线
B.A,B,D三点共线C.C,A,D三点共线
D.B,C,D三点共线参考答案:C6.已知,则的最小值是(
)A、
B、
C、
D、参考答案:C略7.掷一个骰子向上的点数为3的倍数的概率是
(
)A.
B.
C.
D.参考答案:D略8.正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:(
)A.
B.
C.
D..参考答案:A9.已知{an}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣7参考答案:D【考点】等比数列的性质;等比数列的通项公式.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D10.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga-lgb的不同值的个数是()A.9
B.10C.18
D.20参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.函数的单调递减区间为________参考答案:(-2,0),(0,2)略12.若曲线存在垂直于轴的切线,则实数的取值范围是
.参考答案:略13.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为
.参考答案:
14.已知某几何体的三视图如右图所示,其中俯视图是边长为2的正三角形,侧视图是直角三角形,则此几何体的体积为
。参考答案:15.一个棱长为的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内可以任意转动,则正方体棱长最大为
.参考答案:16.已知,分别求,,,然后归纳猜想一般性结论
.参考答案:17.已知Sn为等差数列{an}的前n项和,a1=25,a4=16,当n=时,Sn取得最大值.参考答案:9,117.【考点】等差数列的性质.【分析】由等差数列通项公式求出公差d,由此能求出an=28﹣3n<0,得n>,由此能求出n=9时,Sn取得最大值.【解答】解:∵{an}是等差数列,其中a1=25,a4=16,∴由a4=a1+3d,得16=25+3d,解得d=﹣3.∴an=a1+(n﹣1)d=25﹣3(n﹣1)=28﹣3n.由an<0,得28﹣3n<0,解得n>.∴a1>a2>…>a9>0>a10>a11>…故n=9时,Sn最大值=9×25+×(﹣3)=117.故答案是:9;117.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知一个圆的圆心为坐标原点,半径为2.从这个圆上任意一点P向x轴作垂线段PP',求线段PP’中点M的轨迹.参考答案:解:设点M的坐标为,点的坐标为,则,.因为在圆上,所以 ①将,代入方程①得
即1所以点M的轨迹是一个椭圆
略19.已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.参考答案:略20.参考答案:略21.如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;点、线、面间的距离计算.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S△PEF=×2××2×2=.22.已知圆C过点A(1,4),B(3,2),且圆心C在直线x+y﹣3=0上.(1)求圆C的方程;(2)若点P(x,y)是圆C上的动点,z=x+y,求z的最大值.参考答案:【考点】直线与圆的位置关系;圆的一般方程.【分析】(1)设圆心坐标为(a,b),则,即可求圆C的方程;(2)令z=x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024快递行业广告投放合作协议
- 2024年股权承接协议:股权转让合同范本
- 铁路安全知识培训课件
- 2025年度高端宠物狗品种繁育与买卖合作协议3篇
- 反电诈业务知识培训课件
- 英文卫浴知识培训课件
- 《口头语言的特点》课件
- 2025年度船舶货物保险责任免除与赔偿范围合同3篇
- 郑州黄河护理职业学院《园林植物病理学》2023-2024学年第一学期期末试卷
- 浙江国际海运职业技术学院《媒介伦理与影视法规》2023-2024学年第一学期期末试卷
- 《沙盘技术》教学大纲
- (主城一诊)重庆市2025年高2025届高三学业质量调研抽测 (第一次)地理试卷(含答案)
- 通风系统安装工程施工合同书
- (新版)多旋翼无人机超视距驾驶员执照参考试题库(含答案)
- 哈利波特中英文全集
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之12:“6策划-6.1应对风险和机遇的措施”(雷泽佳编制-2025B0)
- 医院培训课件:《护士角色转换与职业生涯设计》
- DLT5210.1-电力建设施工质量验收及评价规程全套验评表格之欧阳法创编
- 《IT企业介绍》课件
- (2024)湖北省公务员考试《行测》真题及答案解析
- 《抽搐的鉴别与处理》课件
评论
0/150
提交评论