2014年数学高考题分类解析考点35 直线、平面垂直的判定及其性质_第1页
2014年数学高考题分类解析考点35 直线、平面垂直的判定及其性质_第2页
2014年数学高考题分类解析考点35 直线、平面垂直的判定及其性质_第3页
2014年数学高考题分类解析考点35 直线、平面垂直的判定及其性质_第4页
2014年数学高考题分类解析考点35 直线、平面垂直的判定及其性质_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考试题分类解析=.所以直线EF与平面PBC所成角的正弦值为.14.(2014·安徽高考文科·T19)如图,四棱锥的底面边长为8的正方形,四条侧棱长均为.点分别是棱上共面的四点,平面平面,平面.证明:若,求四边形的面积.【解题提示】(1)由线面平行得出BC平行于线线EF、GH;(2)设BD相交EF于点K,则K为OB的中点,由面面垂直得出,再由梯形面积公式计算求解。【解析】(1)因为BC//平面GEFH,BC平面PBC,,且平面PBC平面GEFH=GH,所以GH//BC,同理可证EF//BC,因此GH//EF。(2)连接AC,BD交于点O,BD交EF于点K,连接OP,GK,因为PA=PC,O是AC的中点,所以,同理可得,又,且AC,BD都在底面内,所以底面ABCD,又因为平面GEFH平面ABCD,且平面GEFH,所以PO//平面GEFH,因为平面PBD平面GEFH=GK,所以PO//GK,且GK底面ABCD,从而,所以GK是梯形GEFH的高,由AB=8,EB=2得EB:AB=KB:DB=1:4,从而,即K是OB的中点。再由PO//GK得,即G是PB的中点,且,由已知可得,所以GK=3,故四边形GEFH的面积15、(2014·安徽高考理科·T20)如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.证明:为的中点;求此四棱柱被平面所分成上下两部分的体积之比;若,,梯形的面积为6,求平面与底面所成二面角大小.【解题提示】(1)由及得;(2)将问题转化为求出特殊几何体的体积,即+,,从而得出结果;(3)利用平面ABCD,作证明为平面与底面ABCD所成二面角的平面角,解求得。【解析】(1)因为所以平面QBC//平面A1AD,从而平面A1CD与这两个平面的交线相互平行,即QC//A1D,故的对边相互平行,于是,所以,即Q为BB1的中点。(2)如图所示,连接QA,QD,设AA1=h,梯形ABCD的高位d,四棱柱被平面分成上下两部分的体积分别为V上和V下,BC=a,则AD=2a,,,所以+,又,所以。所以。(3)如上图所示,在中,作,垂足为E,连接A1E,又,所以,于是,所以为平面与底面ABCD所成二面角的平面角。因为BC//AD,AD=2BC,所以,又因为梯形ABCD的面积为6,DC=2,所以,于是,故所求二面角的大小。16.(2014·四川高考文科·T18)在如图所示的多面体中,四边形和都为矩形.(1)若,证明:直线平面;(2)设,分别是线段,的中点,在线段上是否存在一点,使直线平面?请证明你的结论.【解题提示】本题主要考查空间线面平行和垂直的判断与性质等基础知识,考查空间想象能力、推理论证能力.【解析】(1)因为四边形和都是矩形,所以.因为为平面内两条相交直线,所以平面.因为直线平面,所以.又由已知,,,为平面内两条相交直线,所以平面.(2)取线段的中点,连接.设为的交点.由已知,为的中点,连接,则分别为为的中位线,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论