版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市建阳崇雒中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.的展开式中的项的系数是(
)A.
B.
C.
D.参考答案:B略2.已知公比为2的等比数列{an}中,a2+a4+a6=3,则a5+a7+a9的值为(
)A.12 B.18 C.24 D.6参考答案:C【考点】等比数列的性质.【专题】计算题.【分析】将所求式子利用等比数列的通项公式化简,提取q3,再利用等比数列的通项公式化简,将已知的等式代入,计算后即可求出值.【解答】解:∵公比是2的等比数列{an}中,a2+a4+a6=3,则a5+a7+a9=a1q4+a1q6+a1q8=q3(a1q+a1q3+a1q5)=q3(a2+a4+a6)=8×3=24.故选C【点评】此题考查了等比数列的性质,以及等比数列的通项公式,熟练掌握性质及公式是解本题的关键.3.如右下图:已知点O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列结论正确的是()A、直线OA1⊥直线ADB、直线OA1∥直线BD1C、直线OA1⊥平面AB1C1D、直线OA1∥平面CB1D1参考答案:D4.设函数的导函数满足
对于恒成立,则(
)A.,
B.,C.,
D.,参考答案:D略5.“双曲线的方程为”是“双曲线的渐近线方程为”的(
)A.必要而不充分条件
B.充分而不必要条件
C.充分必要条件
D.既不充分也不必要条件参考答案:B6.在长方体ABCD-A1B1C1D1中,如果,,那么A到直线A1C的距离为()A. B. C. D.参考答案:C【分析】由题意可得:连接,AC,过A作,根据长方体得性质可得:平面ABCD,即可得到,,再根据等面积可得答案.【详解】由题意可得:连接,AC,过A作,如图所示:根据长方体得性质可得:平面ABCD.因为,,所以,,根据等面积可得:.故选:C.【点睛】本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题..7.已知是以为周期的偶函数,且时,,则当时,等于:
参考答案:B略8.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1参考答案:A【考点】双曲线的标准方程.【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.9.已知直线l1:ax+4y-2=0与直线l2:2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为 ()A.0
B.-4 C.20 D.24参考答案:B10.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是(
).分层抽样法,系统抽样法
.简单随机抽样法,分层抽样法.系统抽样法,分层抽样法
.分层抽样法,简单随机抽样法参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.一个袋子内装有除颜色不同外其余完全相同的3个白球和2个黑球,从中不放回地任取两次,每次取一球,在第一次取到的是白球的条件下,第二次也取到白球的概率是
参考答案:12.设数列的前n项和,则的值为
参考答案:1513.汽车从路灯正下方开始向前作变速行驶,汽车影长为(t的单位是秒),则汽车影长变化最快的时刻是第_________秒。参考答案:114.已知函数(其中)在区间上单调递减,则实数的取值范围为
▲
。参考答案:
15.下图给出的是计算的一个流程图,其中判断框内应填入的条件是________.
参考答案:略16.设P是边长为2的正△ABC内的一点,P点到三边的距离分别为、、,则;类比到空间,设P是棱长为2的空间正四面体ABCD内的一点,则P点到四个面的距离之和______.参考答案:【分析】根据平面正三角形利用等面积法可得,因此空间正四面体利用等体积法即可。【详解】间正四面体如下图由题意可得边长为2,设每个面的面积为即【点睛】把平面知识类比到空间知识,是高考的常考思想,本题属于中档题。17.对于下列语句:①?x∈Z,x2=3;②?x∈R,x2=2;③?x∈R,x2+2x+3>0;④?x∈R,x2+x﹣5>0,其中正确的命题序号是
.参考答案:②③【考点】命题的真假判断与应用.【专题】常规题型.【分析】对各个选项依次加以判断:利用开平方运算的性质,得到命题①错误而命题②正确,通过配方,利用平方非负的性质,得到③正确,通过举反例得到④错误.【解答】解:对于①,若x2=3,x的取值只有±,说明“?x∈Z,x2=3”不成立,故①错;对于②,存在x=∈R,使x2=2成立,说明“?x∈R,x2=2”成立,故②正确;对于③,因为x2+2x+3=(x+1)2+2≥2>0,所以“?x∈R,x2+2x+3>0”成立,故③正确;对于④,当x=0时,式子x2+x﹣5=﹣5为负数,故“?x∈R,x2+x﹣5>0”不成立,故④错综上所述,正确的是②③两个命题故答案为:②③【点评】本题以开平方运算和二次函数恒成立为载体,考查了含有量词的命题真假的判断,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知拋物线的顶点在原点,它的准线过双曲线-=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,拋物线与双曲线的一个交点是P,求拋物线方程和双曲线方程.参考答案:解:设拋物线方程为y2=2px(p>0),∵点在拋物线上,∴6=2p·,∴p=2,∴所求拋物线方程为y2=4x.∵双曲线左焦点在拋物线的准线x=-1上,∴c=1,即a2+b2=1,又点在双曲线上,∴,解得,∴所求双曲线方程为-=1,即略19.(本小题满分12分)等比数列中,已知.(1)求数列的通项公式;(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和参考答案:(1)设{an}的公比为q.由已知得16=2q3,解得q=2.∴an=a1qn-1=2n.………………4分
(2)由(1)得a3=8,a5=32,则b3=8,b5=32.设{bn}的公差为d,则有从而bn=-16+12(n-1)=12n-28.………………8分所以数列{bn}的前n项和20.19.(本小题满分12分)为了解某校八年级男生的身体素质状况,从该校八年级男生中抽取了一部分学生进行“掷实心球”项目测试,成绩低于6米为不合格,成绩在6米至8米(含6米不含8米)为及格,成绩在8米至12米(含8米和12米)为优秀,假定该校八年级学生“掷实心球”的成绩均超过2米不超过12米.把获得的所有数据分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示,已知有4名学生的成绩在10米到12米之间.(1)求实数a的值及参加“掷实心球”项目测试的总人数;(2)根据此次测试成绩的结果,试估计从该校八年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;(3)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其他项目的测试,求所抽取的2名学生来自不同组的概率.参考答案:(1)∵组距为2,则由图的每组的频率分别为;0.05,,0.15,0.3,0.4,,(2)从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;(优秀包含两组)由古典概型:,(3)若成绩最好和最差的两组人数分别为;2,4。两组男生中随机抽取2名学,共有15种取法。而来自同组的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陕西省汉中市宁强县2024-2025学年七年级上学期1月期末考试地理试卷(含答案)
- 安徽省怀宁县高河中学2024-2025学年高二上学期1月期末地理试题(含答案)
- 2024陶瓷产业特色设计师劳动合同及权益保护协议3篇
- 2024版股权交易咨询服务协议
- 2025年KTV场地租赁合同附条件解除条款2篇
- 福建省南平市将口镇中学2022年高二语文月考试题含解析
- 2024速冻食品冷链物流保险及风险控制合作协议3篇
- 2024年上海市各区高三语文二模试卷【文言文阅读题】汇集练附答案解析
- 2024预售商品房抵押贷款与停车场管理合同范本3篇
- 2025年度安全培训与安全意识提升合同3篇
- GB 1886.174-2024食品安全国家标准食品添加剂食品工业用酶制剂
- 20以内退位减法口算练习题100题30套(共3000题)
- 无人机遥感技术与应用
- 2023年物探工程师年度总结及下一年计划
- 电工(三级)理论知识考核要素细目表
- 4马克思主义宗教观
- 2023年阿拉善教育系统教师考试真题及答案
- 全国优质课一等奖职业学校教师信息化大赛建筑类《混凝土的和易性》说课课件
- 泰山石膏(包头)有限公司企业标准
- 初中英语知识大汇总(374张)
- 医疗器械质量管理体系文件模板
评论
0/150
提交评论