高考数学模拟大题规范训练(12)含答案及解析_第1页
高考数学模拟大题规范训练(12)含答案及解析_第2页
高考数学模拟大题规范训练(12)含答案及解析_第3页
高考数学模拟大题规范训练(12)含答案及解析_第4页
高考数学模拟大题规范训练(12)含答案及解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学大题规范训练(12)15.如图1,四边形为菱形,,,分别为,中点,如图2.将沿向上折叠,使得平面平面,将沿向上折叠.使得平面平面,连接.(1)求证:,,,四点共面:(2)求平面与平面所成角的余弦值.16.随着春季学期开学,某市市场监管局加强了对学校食堂食品安全管理,助力推广校园文明餐桌行动,培养广大师生文明餐桌新理念,以“小餐桌”带动“大文明”,同时践行绿色发展理念.该市某中学有A,B两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)王同学9天6天12天3天张老师

6天6天6天12天假设王同学、张老师选择餐厅相互独立,用频率估计概率.(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;(2)记X为王同学、张老师在一天中就餐餐厅的个数,求X的分布列和数学期望;(3)假设M表示事件“A餐厅推出优惠套餐”,N表示事件“某学生去A餐厅就餐”,PM>0,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明:17.已知且.(1)当时,求证:上单调递增;(2)设,已知,有不等式恒成立,求实数的取值范围.18.定义:若变量,且满足:,其中,称是关于的“型函数”.(1)当时,求关于“2型函数”在点处的切线方程;(2)若是关于的“型函数”,(i)求的最小值:(ii)求证:,.19.给定正整数,已知项数为且无重复项的数对序列:满足如下三个性质:①,且;②;③与不同时在数对序列中.(1)当,时,写出所有满足的数对序列;(2)当时,证明:;(3)当为奇数时,记的最大值为,求.

高三数学大题规范训练(12)15.如图1,四边形为菱形,,,分别为,的中点,如图2.将沿向上折叠,使得平面平面,将沿向上折叠.使得平面平面,连接.(1)求证:,,,四点共面:(2)求平面与平面所成角的余弦值.【答案】(1)证明见解答(2)【解答】【分析】(1)利用线面垂直的性质得到,结合中位线定理得到,最后证明四点共面即可.(2)找到对应二面角的平面角,放入三角形中,利用余弦定理求解即可.【小问1详解】取,的中点分别为,,连接,,取,的中点分别为,,连接,,,由题意知,都是等边三角形,所以,,因为平面平面,平面平面,所以平面,平面,所以,因为,的中点分别为,,所以所以,所以,所以,又因为,所以,因为,的中点分别为,,所以,所以,所以,,,四点共面;小问2详解】连接,,且延长交于点,由题意知,,所以,同理,所以就是二面角的平面角,设,则,,,所以,同理,所以,所以平面与平面所成角的余弦值为.16.随着春季学期开学,某市市场监管局加强了对学校食堂食品安全管理,助力推广校园文明餐桌行动,培养广大师生文明餐桌新理念,以“小餐桌”带动“大文明”,同时践行绿色发展理念.该市某中学有A,B两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)王同学9天6天12天3天张老师

6天6天6天12天假设王同学、张老师选择餐厅相互独立,用频率估计概率.(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;(2)记X为王同学、张老师在一天中就餐餐厅的个数,求X的分布列和数学期望;(3)假设M表示事件“A餐厅推出优惠套餐”,N表示事件“某学生去A餐厅就餐”,,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明:.【答案】(1)(2)分布列见解答,(3)证明见解答【解答】【分析】(1)运用古典概型求概率即可.(2)根据已知条件计算简单离散型随机变量的分布列及期望.(3)运用条件概率及概率加法公式计算可证明结果.【小问1详解】设事件C为“一天中王同学午餐和晚餐选择不同餐厅就餐”,因为30天中王同学午餐和晚餐选择不同餐厅就餐的天数为,所以.【小问2详解】由题意知,王同学午餐和晚餐都选择A餐厅就餐的概率为0.3,王同学午餐和晚餐都选择B餐厅就餐的概率为0.1,张老师午餐和晚餐都选择A餐厅就餐的概率为0.2,张老师午餐和晚餐都选择B餐厅就餐的概率为0.4,记X为王同学、张老师在一天中就餐餐厅的个数,则X的所有可能取值为1、2,所以,,所以X的分布列为X12P0.10.9所以X的数学期望【小问3详解】证明:由题知PN所以PNM所以PNM所以PNM即:PNM所以PNM即.17.已知且.(1)当时,求证:在上单调递增;(2)设,已知,有不等式恒成立,求实数的取值范围.【答案】(1)证明见解答;(2)【解答】【分析】(1)在上单调递增,即在上恒成立,通过构造函数求最值的方法证明.(2)不等式恒成立,即,通过构造函数研究单调性求最值的方法,求不等式恒成立时实数的取值范围.【小问1详解】当时,,则,令,则,两边取对数得设,则,所以在单调递增,所以时,即时,,所以时恒成立,即,所以在上单调递增.【小问2详解】法一:,即,两边取对数得:,即.设,则问题即为:当时,恒成立.只需时,.,令得,当时,,单调递增;当时,,单调递减.又因为,则,所以时,单调递减,所以时,,所以即.设,则,当时,,单调递增;当时,,单调递减,所以,当时,,时,,所以的图象与轴有1个交点,设这个交点为,因为,所以;所以当时,,即当时,不等式,所以当不等式在恒成立时,.即实数的取值范围为.法二:,即,两边取对数得:,即设,令得,当时,,单调递减.又因为,所以,在单调递减,由,则在恒成立,即,上式等价于,即,由在单调递减,所以.即实数的取值范围为.【小结】方法小结:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.18.定义:若变量,且满足:,其中,称是关于的“型函数”.(1)当时,求关于的“2型函数”在点处的切线方程;(2)若是关于的“型函数”,(i)求的最小值:(ii)求证:,.【答案】(1)(2)(i);(ii)证明见解答【解答】【分析】(1)根据题意,得到,求得,结合导数的几何意义,即可求解;(2)根据题意,得到,(i)化简,结合基本不等式,即可求解;(ii)由题意,得到,设,,其中,化简得到,记,利用导数求得函数的单调性和最小值,即可求解.【小问1详解】解:当时,可得,则,所以,所求切线方程为,即.【小问2详解】解:由是关于的“型函数”,可得,即,(i)因为,当且仅当即时取得最小值.(ii)由,即,则,且,,可设,,其中,于是,记,可得,由,得,记,当时,当时,,则,所以.【小结】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、合理转化,根据题意转化为两个函数的最值之间的比较,列出不等式关系式求解;2、构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;3、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.4、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.19.给定正整数,已知项数为且无重复项的数对序列:满足如下三个性质:①,且;②;③与不同时在数对序列中.(1)当,时,写出所有满足的数对序列;(2)当时,证明:;(3)当为奇数时,记的最大值为,求.【答案】(1)或(2)证明详见解答(3)【解答】【分析】(1)利用列举法求得正确答案.(2)利用组合数公式求得的一个大致范围,然后根据序列满足的性质证得.(3)先证明,然后利用累加法求得.【小问1详解】依题意,当,时有:或.【小问2详解】当时,因为与不同时在数对序列中,所以,所以每个数至多出现次,又因为,所以只有对应的数可以出现次,所以.【小问3详解】当为奇数时,先证明.因为与不同时在数对序列中,所以,当时,构造恰有项,且首项的第个分量与末项的第个分量都为.对奇数,如果和可以构造一个恰有项的序列,且首项的第个分量与末项的第个分量都为,那么多奇数而言,可按如下方式构造满足条件的序列:首先,对于如下个数对集合:,,……,,每个集合中都至多有一个数对出现在序列中,所以,其次,对每个不大于的偶数,将如下个数对并为一组:,共得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论