平面直角坐标系经典讲义_第1页
平面直角坐标系经典讲义_第2页
平面直角坐标系经典讲义_第3页
平面直角坐标系经典讲义_第4页
平面直角坐标系经典讲义_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天行健,君子以自强不息,地势坤,君子以厚德载物.PAGEPAGE5七年级数学学案平面直角坐标系知识点概述1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、已知点的坐标找出该点的方法:分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x轴y轴的的垂线,两垂线的交点即为要找的点。3、已知点求出其坐标的方法:由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是改点的横坐标,垂足在y轴上的坐标是该点的纵坐标。4、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;5、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0,0)。两坐标轴的点不属于任何象限。6、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n),横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n)横,纵坐标都反号7、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。8、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b,a)第二、四象限角平分线上的点横纵坐标互为相反数。点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)9、点P(x,y)的几何意义:点P(x,y)到x轴的距离为|y|,点P(x,y)到y轴的距离为|x|。10、点的平移特征:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x-a,y);将点(x,y)向左平移a个单位长度,可以得到对应点(x+a,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。例题精讲例1、象限内的点的特征1、原点O的坐标是,点M(a,0)在轴上。2、已知,则点(,)在。3、若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第象限。4、如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?例2、点到坐标轴的距离1、点P到x轴的距离是2,到y轴的距离是3,则P点的坐标是。2、点A在x轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为;3、若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(–3,0)C.(0,3)D.(0,3)或(0,–3)例3、平行于坐标轴上的点的特征1、在平面直角坐标系内,有一条直线PQ平行于y轴,已知直线PQ上有两个点,坐标分别为(-a,-2)和(3,6),则。2、已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为。3、A(–3,–2)、B(2,–2)、C(–2,1)、D(3,1)是坐标平面内的四个点,则线段AB与CD的关系是。4、在坐标系内,点P(2,-2)和点Q(2,4)之间的距离等于个单位长度。线段PQ的中点的坐标是。例4、关于坐标轴对称的点的特征1、点A(﹣1,2)关于轴的对称点坐标是;点A关于x轴对称的点的坐标为;点A关于原点的对称点的坐标是。2、已知点M与点N关于轴对称,则。3、已知点P(a+1,2a-1)关于x轴的对称点在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论