安徽省安庆市重点中学2024年数学试题高考模拟题_第1页
安徽省安庆市重点中学2024年数学试题高考模拟题_第2页
安徽省安庆市重点中学2024年数学试题高考模拟题_第3页
安徽省安庆市重点中学2024年数学试题高考模拟题_第4页
安徽省安庆市重点中学2024年数学试题高考模拟题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省安庆市重点中学2023年数学试题高考模拟题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线方程为()A. B.C. D.2.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.3.已知集合,,则A. B.C. D.4.设,集合,则()A. B. C. D.5.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像6.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关7.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.8.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.9.已知,则()A. B. C. D.10.已知点、.若点在函数的图象上,则使得的面积为的点的个数为()A. B. C. D.11.如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是()A.2014年我国入境游客万人次最少B.后4年我国入境游客万人次呈逐渐增加趋势C.这6年我国入境游客万人次的中位数大于13340万人次D.前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差12.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,分别为内角,,的对边,,,,则的面积为__________.14.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.15.已知数列是各项均为正数的等比数列,若,则的最小值为________.16.已知,是互相垂直的单位向量,若与λ的夹角为60°,则实数λ的值是__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.(1)证明:;(2)求与面所成角的正弦值.18.(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.19.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.20.(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.21.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.22.(10分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.2.A【解析】

化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。3.D【解析】

因为,,所以,,故选D.4.B【解析】

先化简集合A,再求.【详解】由得:,所以,因此,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.5.B【解析】

化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.6.B【解析】

根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.7.A【解析】

依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.8.B【解析】

先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.9.D【解析】

根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.10.C【解析】

设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,,解得或或.综上,满足条件的点共有三个.故选:C.【点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.11.D【解析】

ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【详解】A.由统计图可知:2014年入境游客万人次最少,故正确;B.由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C.入境游客万人次的中位数应为与的平均数,大于万次,故正确;D.由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.12.B【解析】

根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B.【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面积.故答案为:.【点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.14.360【解析】

先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.【详解】第一块小矩形的面积,第二块小矩形的面积,故;而,故.故答案为:360.【点睛】本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.15.40【解析】

设等比数列的公比为,根据,可得,因为,根据均值不等式,即可求得答案.【详解】设等比数列的公比为,,,等比数列的各项为正数,,,当且仅当,即时,取得最小值.故答案为:.【点睛】本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.16.【解析】

根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设(1,0),(0,1),则(,﹣1),λ(1,λ);又夹角为60°,∴()•(λ)λ=2cos60°,即λ,解得λ.【点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见详解;(2)【解析】

(1)在折叠前的正方形ABCD中,作出对角线AC,BD,由正方形性质知,又//,则于点H,则由直二面角可知面,故.又,则面,故命题得证;(2)作出线面角,在直角三角形中求解该角的正弦值.【详解】解:(1)证明:在正方形中,连结交于.因为//,故可得,即又旋转不改变上述垂直关系,且平面,面,又面,所以(2)因为为直二面角,故平面平面,又其交线为,且平面,故可得底面,连结,则即为与面所成角,连结交于,在中,,在中,.所以与面所成角的正弦值为.【点睛】本题考查了线面垂直的证明与性质,利用定义求线面角,属于中档题.18.(1)证明见详解;(2)证明见详解【解析】

(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,,则对于任意都成立,则成等比数列,设公比为,验证得答案.【详解】(1)证明:由是等比数列,由等比数列的性质可得:等比数列是“数列”.(2)证明:既是“数列”又是“数列”,可得,()(),()可得:对于任意都成立,即成等比数列,即成等比数列,成等比数列,成等比数列,设,()数列是“数列”时,由()可得:时,由()可得:,可得,同理可证成等比数列,数列是等比数列【点睛】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能力,属于难题.19.(Ⅰ).(Ⅱ).【解析】

详解:(Ⅰ)当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.(Ⅱ)因为,所以.由题意知对,,即,因为,所以,解得.【点睛】⑴绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:①绝对值定义法;②平方法;③零点区域法.⑵不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:①为参数)恒成立②为参数)恒成立.20.(1)(2)证明见解析【解析】

(1)利用与的关系即可求解.(2)利用裂项求和法即可求解.【详解】解析:(1)当时,;当,,可得,又∵当时也成立,;(2),【点睛】本题主要考查了与的关系、裂项求和法,属于基础题.21.(1),;(2)见解析【解析】

(1)消去t,得直线的普通方程,利用极坐标与普通方程互化公式得曲线的直角坐标方程;(2)判断与圆相离,连接,在中,,即可求解【详解】(1)将的参数方程(为参数)消去参数,得.因为,,所以曲线的直角坐标方程为.(2)由(1)知曲线是以为圆心,3为半径的圆,设圆心为,则圆心到直线的距离,所以与圆相离,且.连接,在中,,所以,,即的最小值为.【点睛】本题考查参数方程化普通方程,极坐标与普通方程互化,直线与圆的位置关系,是中档题22.(1),;(2)1.【解析】

(1)利用正弦的和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论