第六章 分类资料的统计推断课件_第1页
第六章 分类资料的统计推断课件_第2页
第六章 分类资料的统计推断课件_第3页
第六章 分类资料的统计推断课件_第4页
第六章 分类资料的统计推断课件_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章分类资料的统计推断第六章分类变量资料的统计推断第六章分类资料的统计推断主要内容二项分布的概念定义,概率,均数与标准差,图形样本率的均数和标准差二项分布的应用二项分布第六章分类资料的统计推断一、二项分布定义任意一次试验中,只有事件A发生和不发生两种结果,发生的概率分别是:

和1-若在相同的条件下,进行n次独立重复试验,用X表示这n次试验中事件A发生的次数,那么X服从二项分布,记做XB(n,),也叫Bernolli分布。第六章分类资料的统计推断二、二项分布的概率假设小白鼠接受一定剂量的毒物时,其死亡概率是80%。对每只小白鼠来说,其死亡事件A发生的概率是0.8,生存事件A的发生概率是0.2。试验用3只小白鼠,请列举可能出现的试验结果及发生的概率。例题第六章分类资料的统计推断那么事件A(死亡)发生的次数X(1,2,3….n)的概率P:各种符号的意义XB(n,):随机变量X服从以n,为参数的二项分布。第六章分类资料的统计推断三、二项分布的均数与标准差通过总体中的取样过程理解均数与标准差XB(n,):X的均数X=

n

X的方差

X2=n(1-)X的标准差:第六章分类资料的统计推断二项分布π=0.3时,不同n值对应的二项分布

第六章分类资料的统计推断图形特点:两个轴意义,对称、偏态、与正态分布的关系决定图形的两个参数:n,二项分布第六章分类资料的统计推断五、样本率的均数和标准差样本率的总体均数

p:样本率的总体标准差

p:样本率的标准差(标准误)Sp:第六章分类资料的统计推断二项分布的应用总体率区间估计样本率与总体率的比较两样本率的比较统计推断第六章分类资料的统计推断六、总体率区间估计查表法正态分布法公式:p

µ

Sp

二项分布的应用第六章分类资料的统计推断七、样本率与总体率的比较例题:新生儿染色体异常率为0.01,随机抽取某地400名新生儿,发现1名染色体异常,请问当地新生儿染色体异常是否低于一般?分析题意,选择合适的计算统计量的方法。二项分布的应用第六章分类资料的统计推断假设检验过程1.建立假设:

H0

1=0.01H1

1<0.012.确定显著性水平,

取0.05。3.计算统计量:P(0)+P(1)直接得到概率P4.求概率值P5.做出推论二项分布的应用第六章分类资料的统计推断八、两样本率的比较

为研究某地男女学生的肺吸虫感染率是否存在差别,研究者随机抽取该地80名男生和85名女生,查得感染人数男生23人,女生13人,请问男女之间的感染是否有差别?统计量u的计算公式:二项分布的应用第六章分类资料的统计推断假设检验的过程1.建立假设:

H0

1=2H1

1

2

2.确定显著性水平,

取0.05。3.计算统计量u4.求概率值P5.做出推论二项分布的应用第六章分类资料的统计推断Poisson分布泊松分布第六章分类资料的统计推断Poisson分布的意义盒子中装有999个黑棋子,一个白棋子,在一次抽样中,抽中白棋子的概率1/1000在100次抽样中,抽中1,2,…10个白棋子的概率分别是……第六章分类资料的统计推断放射性物质单位时间内的放射次数单位体积内粉尘的计数血细胞或微生物在显微镜下的计数单位面积内细菌计数人群中患病率很低的非传染性疾病的患病数特点:罕见事件发生数的分布规律第六章分类资料的统计推断主要内容Poisson的概念Poisson分布的条件Poisson分布的特点Poisson分布的应用第六章分类资料的统计推断Poisson的概念常用于描述单位时间、单位平面或单位空间中罕见“质点”总数的随机分布规律。罕见事件的发生数为X,则X服从Piosson分布。记为:XP()。X的发生概率P(X):Piosson分布的总体均数为Piosson分布的均数和方差相等。=2第六章分类资料的统计推断Poisson分布的条件由于Poisson分布是二项分布的特例,所以,二项分布的三个条件也就是Poisson分布的适用条件。另外,单位时间、面积或容积、人群中观察事件的分布应该均匀,才符合Poisson分布。第六章分类资料的统计推断Poisson分布的特点Poisson分布的图形Poisson分布的可加性Poisson分布与正态分布及二项分布的关系。第六章分类资料的统计推断λ取不同值时的Poisson分布图第六章分类资料的统计推断Poisson分布的可加性观察某一现象的发生数时,如果它呈Poisson分布,那么把若干个小单位合并为一个大单位后,其总计数亦呈Poisson分布。如果X1P(1),X2P(2),…

XKP(K),那么X=X1+X2+…+XK,

=1

+2

+…

+k,则XP()。第六章分类资料的统计推断Poisson分布与正态分布及二项分布的关系当较小时,Poisson分布呈偏态分布,随着增大,迅速接近正态分布,当20时,可以认为近似正态分布。Poisson分布是二项分布的特例,某现象的发生率很小,而样本例数n很大时,则二项分布接近于Poisson分布。

=n

(应用:Poisson替代二项分布)第六章分类资料的统计推断XP(X)二项分布Piosson分布00.36600.367910.36970.367920.18490.183930.06100.061340.01490.015350.00290.003160.00050.000570.00010.000180.00000.00001.00001.0000第六章分类资料的统计推断例题:一般人群食管癌的发生率为8/10000。某研究者在当地随机抽取500人,结果6人患食管癌。请问当地食管癌是否高于一般?分析题意,选择合适的统计量计算方法。二项分布计算方法:

Poisson分布的计算方法:均数是?第六章分类资料的统计推断Poisson分布的应用用是否符合Poisson分布来判断某些病是否具有传染性、聚集性等。总体均数的区间估计样本均数与总体均数的比较两样本均数的比较第六章分类资料的统计推断总体均数的区间估计查表法:将一个面积为100cm2的培养皿置于某病房,1小时后取出,培养24小时,查得8个菌落,求该病房平均1小时100cm2细菌数的95%的可信区间。正态近似法:当样本计数大于X(亦即

)较大时,Poisson分布近似正态分布,可用公式:第六章分类资料的统计推断样本均数与总体均数的比较直接概率法:例7.15正态近似法:统计量

例题:某溶液原来平均每毫升有细菌80个,现想了解某低剂量辐射能的杀菌效果。研究者以此剂量照射该溶液后取1毫升,培养得细菌40个。请问该剂量的辐射能是否有效?第六章分类资料的统计推断假设检验过程1.建立假设:

H0

=80H1

<802.确定显著性水平,

取0.05。3.计算统计量

:4.求概率值P:单侧5.做出推论第六章分类资料的统计推断两样本均数的比较两个样本观察单位相同时:计算统计量两个样本观察单位不同时:第六章分类资料的统计推断例题:为研究两个水源被污染的情况是否相同,在每个水源各取10ml水坐细菌培养,结果甲水源样品中测得菌落890个,乙水源样品测得菌落785个。请问两个水源的污染情况是否不同?第六章分类资料的统计推断例题:某车间在生产工艺改革前测三次粉尘浓度,每次测1升空气,分别测得38,29和36颗粉尘;改革后测取2次,分别有25,18颗粉尘。请问改革前后粉尘浓度是否相同?第六章分类资料的统计推断

二项分布Poisson分布:总体率µ=n:总体中一定计量基本符号n:样本例数单位内发生某X:某类事件发生数事件的总均数

p=X/n:样本率X或X:样本均数恰有X例阳性的概率最多有k例累积概率至少有k例正态近似条件n

与n(1-)均大于5n20

均数u=nu=n

(率)u=n=2标准差

可信区间估计n

≦50查表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论