第7章非线性控制系统分析《自动控制原理》课件_第1页
第7章非线性控制系统分析《自动控制原理》课件_第2页
第7章非线性控制系统分析《自动控制原理》课件_第3页
第7章非线性控制系统分析《自动控制原理》课件_第4页
第7章非线性控制系统分析《自动控制原理》课件_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章非线性控制系统分析7-1非线性控制系统概述以前讨论的自动控制理论,都是针对线性控制系统的所以也叫线性自动控制理论.所谓线性控制系统是指系统中所有环节的输入输出都呈线性关系,若有的环节所具有的非线性特性不很强烈,且可对其线性化,则也可当作线性环节处理.但如此处理后,应使对系统的分析和设计的精度满足工程上的要求.系统中只要有一个环节的非线性特性很强烈,对其线性化将影响对系统分析和设计的精度或者非线性环节属本质非线性无法对其线性化,则只能用非线性理论对系统进行分析和设计.在工程实际中,大多数被控对象都具有非线性特性,因此学习和研究非线性控制理论具有很现实的意义.在某些情况下,在线性控制系统人为地加入适当的非线性因素反而有利于控制质量的提高.爱认毗驻片挡授亏艳堰聚琐吁韭裁插蚜义嫉蛇除肖月漏辕渝仓磁裸容奢撞第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件在系统中,只要有一个环节或元件有非线性特性,则整个系统就叫非线性系统,如下图所示.上图中,大方框表示一具有理想继电特性的非线性环节,表示非线性系统中线性部分的传递函数.非线性的特性是各种各样的,教材图及表给出了一些工程上常见的典型非线性特性.7-2非线性控制系统的特征非线性控制系统有如下两个基本特征:(1)非线性控制系统的基本数学模型是非线性微分方程(2)非线性控制系统的性能不仅与系统本身的结构和参睬窘洼熔辈桥限坝梁瘤美屎刮毁三笔败淄隘竞殴腆奏庆抬嘎抚体通哺尽挨第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件数有关,还与系统的初始状态及输入信号的形式和大小有关.由于非线性控制系统的基本数学模型是非线性微分方程,而从数学上讲,非线性微分方程没有一个统一的解法,再由于第二个特征,对非线性控制系统也没有一个统一的分析和设计的方法,只能具体问题具体对待.本章将介绍的分析非线性控制系统的相平面法和描述函数法,是在非线性控制系统满足一定的条件下,将线性控制理论的某些内容给以扩充和变通后得出的,因此具有一定的局限性.董堪恃呕员径申灰油哉相锅崭西唱釉恨宛饺挡坯粒掏雏嫌觉呈何铀谷乌奉第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件7-3相平面法1.相平面法的基本概念所谓相平面法,是一种二阶微分方程的图解法.此法即可用于线性二阶系统,也可用于线性部分是二阶的非线性系统.设一二阶系统可用下面常微分方程描述:上面微分方程的解可用对的关系曲线表示,也可用与的关系曲线表示,当用后一种关系曲线时,是把曲线画在的直角坐标平面上,而作为参变量在平面上并不出现.喉贮彩吠戒彬勾杆峨嫡汀马栏阵枫流哇熙默月襟拍琅贯闺蝴密澈景旗镁卉第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件设下图为式(1)在初始条件情况下的与的关系曲线.当时,平面上的点随时间的增大,将沿曲线移动.当初始条件确定后,曲线也确定,则曲线上任何一点的坐标也确定.当的值确定后,由式(1)可知的值也唯一确定,从而系统的整个运动状态也完全确定.整条曲线就清楚地描述了系统在某一初始条件下的运动性质.上图中的平面叫相平面,曲线叫系统在某一初始条件下的相轨迹.由于系统的初始条件可有无穷多个,因此相应的相轨迹也有无穷多条,这无穷多条相轨迹构成的相轨迹簇叫相平面图.因为猾第戮栅娱蛤搂浚肮逝镣联盼帕偏窑趋淳管棍讯炽来屑卧隙述讽胜颤乌藐第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件所以,当确定后,也唯一确定.而是相轨迹在处的曲线斜率,由于每一点上的斜率确定,所每一点上只能通过一条相轨迹,这说明由不同初始条件出发的相轨迹曲线互不相交.如果在相平面上某些点的,即曲线在这一点上的斜率不定,可有无穷多条相轨迹通过这一点,称这一点为系统的平衡点,或叫奇点.在相平面的上方(如下图),由于所以总是朝大的方向变化,故相轨迹上的点总是按图中箭头所指从左向右移动.在相平面的下方,由于所以总是朝小的方向变化,故相轨迹上的点总是按图中箭箭头所指从右向左移动.在轴上,由于,即不变化,达到最大值或最小值,故相轨迹曲线与轴的交点处的切线总垂直于轴.员挥吱厦辨诺垮死矢啤驾窟图纱乒刀谓蟹院坚紊各军砾炬佳碧鹿雄朽林需第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件2.相轨迹作图法先以线性系统为例,说明相轨迹曲线的画法.(1)解析法根据系统的微分方程求出相轨迹方程,然后由相轨迹方程绘制相平面图,此方法仅用于简单的一﹑二阶线性系统或分段线性系统.(a)线性一阶系统系统自由运动的微分方程为:相轨迹方程为:设初始条件:,当T>0,相轨迹如下图系统从任一初始点出发,均将沿相轨迹收敛于原点.当T<0,相轨迹如图中绿线所示.系统从任一初始点出发均将沿相轨迹发散至无穷.蔷陋帐榔蒸贵了艰逾秧舟坊延良螺钩仁渐木蚌仅钳关蚜鸡墟烃悬幢号矮栈第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件(b)线性二阶系统系统自由运动的微分方程为:式(5)可用两个一阶微分方程联立表示:式(6)除以式(7):第一种情况,,式(8)为:对式(9)两边积分得:丧骸锤赫所忙堡卜泰着研蜜擅湛槽缘纸牟筋恭蟹碴溺炸矗索狄镰栖剧谨魔第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件式(10)中,,是由初始条件决定的积分常数,当取不同的数值时,式(10)在平面上表示一簇同心的椭圆,如下图所示.每一个椭圆相当于一个简谐运动.由于在原点,,所以,原点叫奇点.这种奇点对于式(9)是唯一的一个,故又叫孤立奇点,又由于奇点附近的相轨迹是一簇封闭的曲线所以这样的孤立奇点又叫中心点.在的其它各种情况下,通过对式(8)两边积分求出与间的解析表达式,不仅求解过程较困难和复杂即使由解析表达式画相轨迹也不太容易.教材P.360~P.367给出了其它各种情况下二阶线性系统的相轨迹图及关于各焙冲朋贼姻荣玲呆琉福政菜夷肉峦腕威畏蚀品措捕责梭耐轿掏丹奋爷旱僚第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件奇点的概念,请参阅.(2)等倾线法等倾线法是对一般二阶系统画相轨迹的图解法.设二阶系统一般形式的微分方程如下:式(11)又可化为:正是相轨迹方程的导函数,当取不同值时,的值也不同,即相轨迹上各点的曲线斜率不一样,但对于一个微分方程,当初始条件不同时,其有一簇相轨迹,而这一簇相轨迹上各斜率相同的点连起来就可得一条曲线,这条曲线叫等倾线.从数学角度分析,有:令为某一常数,则是关于跺宜阵傅稽援震泞随洱豆豆毅堡狡罪距膊椎辙韩风讫绰仇乱菜滚瀑嵌巡阴第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件的方程.当各不相同的相轨迹通过上面方程所表示的曲线时,各条相轨迹与这一曲线的交点处的斜率均等于例:设一二阶线性系统的齐次微分方程为:即,此系统在初始条件激励下呈衰减振荡过程.由式(13)可得:令,得等倾线方程为:若令,则等倾线如下图所示.如则等倾线如图中蓝线.依此类推,取不同的值,由式(15)画出足够密的一簇等倾线,然后按各条等倾线所表示的相轨迹在该条等倾线上的斜率将各点连成一条光滑的曲线,如左上图所示.祝瞎下彼涎胎橙腆柔招账仰廉饶摄效辜我佛奇小鸵筒询糟犬姑钟夫熊娃些第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件图中相轨迹表示系统在某一初始条件下的运动轨迹.此系统有一对实部为负的共轭复根,因此在任何一对初始条件激励下,其自由运动均呈率减振荡形式不同初始条件下的各条相轨迹从不同方向趋向于相平面的原点,这种奇点叫稳定的焦点.3.由相平面图求时间解曲线在相平面上得到的是表示与间函数关系的相轨迹曲线,但在工程上分析系统时,往往希望得到比较直观的关于时间的函数图象,因此要利用相平面上的相轨迹曲线来确定的曲线图形.下图表示相轨迹曲线中的某一段.若A点对应的时刻为,

求B点对应的时刻可在AB段沿相轨迹运动的方取若干个点剔嘘时髓创跳徒犯继螟赤洋蕉娇傍篆份学骏缅彬挨胜恤酥交肤注续率崖筒第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件计算出相邻两点间的时间增量,则系统从点A运动到B点时,B点的时刻,而的计算有下面三种方法.(1)增量法设相轨迹上两点位移增量较小,设为两点处相轨迹上速度变量的平均值,则:(2)积分法设点对应的时间为,点对应的时间为,则其几何意义见右图.刚桐毛夜昼缘熟附朗伤蠕志身顾铅舆碉些笺雷抬忌祖荆摊捌袒俏侨逻胰述第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件(3)圆弧法设相平面上某条相轨迹的某一段如下图所示.用圆心坐标为,半径为的圆上的一段圆弧来近似表示相轨迹上两点间的一段曲线.设这段圆弧上的任一点坐标为,这点与圆心的连线和横轴正方向间的夹角为,则有:若点与圆心的连线和横轴正方向间的夹角为点与圆心的连线和横轴正方向间的夹角为,且.积分法中的式(17)可转化为:叶愁脂奏抱陀烙津炼褪毕竹豪皿烘袒狼歧擞必督巨扭肠池杠说颐环栖涩陆第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件4.非线性系统的相平面分析例1.继电型非线性系统阶跃响应和斜坡响应的分析.设系统初始条件:(1)单位阶跃输入信号对的微分方程式为:因与没有直接关系,故设法把变量换成变量.当时,代入式(19):由于与为非线性关系,将式(20)分段线性化,咎怠肿饿樊绘到嫉菏相抹浅懦绿着证姚户渊逞谰掠窄裹粤坎疥匣银玛翠砧第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件由右图得:区域令,则等倾线为一组平行于轴的直线.当时,犯缨案及竞撼圈呵窒跑标抬虎俘冉楞库洁拱诌钡笑呢薯圣雄都颓彭淆部钮第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件相轨迹为一组平行的曲线,所由相轨迹均趋向于的直线,如下图所示.这一特定的相轨迹如上图所示.以绪特峨捏琼州裴九贾藐弄柱瞪君蠕书伏乡厂樱辰跳迈韩蛇包屁般珠骆劣第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件区域因相轨迹的斜率始终为-1,所以相轨迹为一簇平行的斜率为-1的直线,见下图.特定的相轨迹为候挡伦在环颂硕郡枚豆菌提斧乍峡犬钦憋虾玲发鹃华侩槛欢潜方端卓绅宣第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件区域相轨迹与区域类似,但所有相轨迹均趋向于直线,见下图.特定的相轨迹为,最后形成一个极限环.系统作持续振荡,振荡的幅值与及线性部分的时间常数和传递系数有关.稍噎氛旱衔怖蛆廓童万材魄惧世猾猜非垫垢辱师陋答偷斌韧锄愿资嗡喻者第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件(2)等速度输入信号代入式(19)并分段线性化得:a)当R=1.2>0.8,则:区域,所有相轨迹趋近于的水平直线.区域,所有相轨迹趋近于的水平直线.区域,所有相轨迹趋近于楞蛋修彝掐羹胀灰八磺呢焊敏伍卯溢搓是讨琅碍元枉叫斗率梢讹留树营着第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件的水平直线.相轨迹图见下图.由上图可见,当初始偏差位置在点时,系统将沿轨线运动,当时,,显然系统不稳定.此耶萧惺滨棵石淖聘确巳促蕊猪酉闽敌谆辈袒立厘奠都咯据苗题胶柠轧旁第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件b)当R=0.8,则区域,相轨迹在平面上任一点的斜率均为-1,相轨迹为一簇区域,所有相区域,所有相轨迹趋近于轨迹趋近于直线.斜率为-1的直线.牢赴反琶趴朽芭马诉领叼榔匣珠淑旧埋捷渠幢掐幢栅所秀桓歧勒差旷硅剃第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件c)当时,分段线性化方程如下:区域,所有相轨迹趋近于的水平直线.同理可得区域的相轨迹簇和区域的相轨迹簇.从某一初始点出发的相轨迹见下图,存在极限环帜赴差贯乒巩透妈龋蛀陋忆灵氰鹊针豢刚醒狱沦探暮许聚坏墟简南碳雇怖第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件例2.速度反馈对继电型系统的性能影响设有下图所示无速度反馈的理想继电型非线性系统.分段线性化方程为:区域,其上相轨迹如右图.区域,其上相轨迹如右图.从任一初始点出发的相轨迹也见右图,系统呈衰减振荡,振荡时间较长.绞胰滨炸谍抿勒副臻傀糟籽傲崩胸威琶支榔瓮说岔菏满辉轿敞儡辆棱奄徽第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件其它参数不变,有速度反馈的理想继电型非线性系统见下图.分段线性化方程为:两区域的分界线即开关线方程为:即斜率为过原点的直线,区域区域与无速度反馈相比,开关线向左倾斜了一个角度.合饯钱驮昨汇杀徽萤补垢运樟泉拽嫂昭畦慈井想冒箱赘瘪需泞肌囚掣妮器第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件两个区域的相轨迹簇见下图.两区域中各自分别总有一条相轨迹与开关线切于两点.当相轨迹曲线与开关线交于线段内时,系统状态必将沿开关线迅速滑向原点.如左图所示.如继电非理想,即开关在切换时有滞后,则相轨迹在线段内时,系统状态呈抖动式地滑向原点,出现小幅振荡.由上分析可知,有速度反馈的继电型非线性系统的动态性能比无速度反馈的继电型非线的动态性能要好.7-4描述函数法1.描述函数的基本概念描述函数法又叫谐波线性化法.淮潍扔滤亡滤午识铰超候坯氛返将莎钢易蒸上烂避乞癸蛤辕扑嗜蜀驭痉第第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件非线性系统的典型结构可由下图所示.描述函数法的基本思想是用某一数学方法,将非线性系统谐波线性化后,引用分析线性系统的频率响应法.为此,非线性系统本身必须满足以下几个条件:(1)非线性环节N的特性不是时间的函数,即是非时变的;(2)非线性环节的输入信号是幅值为A的正弦信号,不包含恒定直流分量;(3)非线性环节的输出信号一般情况下是非正弦信号,从付里叶级数角度看,它是直流分量,一次谐波即基波分量及高次谐波分量的叠加.如线性痪钩萤惶特条仰究搅咨竿氰运冤重当谷痉嗓汁撬咙烷晴觅廷灌理掏蝗恫矛第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件部分具有良好的低通虑波特性,能将中的高次谐波分量虑有效地虑掉,则可近似认为只有中的一次谐波分量沿闭环通道传送;(4)要求沿闭环通道传送的信号不能有的直流分量,因此非线性环节的特性必须斜对称,即满足如下关系式:,则的直流分量2.描述函数的定义非线性环节输出信号一次谐波分量与输入正弦信号的复数比定义为非线性环节的描述函数,即:式(21)中:为非线性环节的描述函数;是非线性环节正弦输入信号的幅值;为非线性环节输出信号一次谐波分量的幅值;输出一次谐波分量和输入正弦信号的初相位之差.劣嗜偏思狂诣摆碍野让椰照坝陌鸵制志糯窗纺允扰熊汐炉啤黔豢泉竣且篷第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件描述函数式(21)的一般计算公式如下.设非线性环节输入正弦信号,非线性环节的非正弦输出信号经付里叶级数展开后可表为:根据上述条件(4)有:根据上述条件(3)有:上式中:因此,左式中:,从而描述函数式(21)表为油秀稠扁侄虑脑文颓套助许贝取伪夏予美雪陛雕甭蓑效舰怀宣愈漱鼠福针第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件描述函数的特性:(1)当非线性环节包含储能元件时,其输出与输入信号的幅值和频率有关,故N也是输入信号幅值和频率的函数,可用表示;(2)工程上大多数非线性环节包含储能元件,它们的输出信号仅与输入信号的幅值有关,故N也仅是输入信号幅值的函数,可用表示;(3)若非线性环节是单值函数,则其描述函N是实数,若非线性环节是多值函数,则其描述函N是复数;(4)若非线性环节输出,其中,且它们都是单值非线性,描述函数分别为,则此非线性环节的描述函数为篓逆踩妻咖卢蕴当坑淑宰气佑孙喇联崭再鲸镑论墟蔫辈蚁绵勘域淖已湾苟第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件特性(4)可用下图说明:采用描述函数法研究非线性系统,其优点是不管非线性系统的线性部分是几阶的,它均能被采用.但用它研究问题的范围仅限于分析和校正非线性系统的稳定性,稳定性的性质,如自激振荡的稳定性和振荡参数.不能研究非线性系统的瞬态响应性能,且非线性系统无外加输入信号,线性部分要具有良好的低通虑波特性,以满足分析的精度要求.陕愤朴芯佩换晤阔南著设嚏兢酬赶锋孔串泼删瞬递于斥剁案谓囚墒家陇搐第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件3.典型非线性特性描述函数的求取举例饱和非线性是最常见的一种非线性特性,如各类放大器就具有饱和非线性特性,其输入输出关系可用下图表示.由图可见,当时,即:因非线性为斜对称,输出可分段表为:对进行付里叶分解,由于非线性斜对称故,取分解后的一次谐波,有:,由于为奇函数,为偶函数所以普映毯怒肄禾权益掌忍螟专状沫勃逸倡尘条罪阁咯爆赫浦铅垒欺庆赶纹查第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件由于为奇函数,则为偶函数,所以馅肯滓哎梨官鹏斌怔葡撵故铺亡送错汹皇完啤庞舌葵翅慰祈阎糊岿昭蝎靳第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件求取描述函数的其它例子请见教材P.376~P.379,工程上常见的非线性特性及其描述函数见教材P.379~P.380表8-1.4.非线性系统稳定性分析的描述函数法设一非线性系统方框图如下所示.令系统在虚线处开环,且假设,则式(23)中,设,式中是的幅值,则壬哮琴蛋空贮对必喀得站锥揪察薛飞封颤矾嘲纺梁群酗勇电贮敖劣苹趴娇第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件若系统产生振荡,则有,比较式(23)和式(24)可得系统产生振荡的条件为:非线性系统产生自激振荡的上述条件,也可表为:的形式,推导如下:称上式中为非线性特性的负倒描述函数.有上分析可得两个结论:(1)当非线性系统的线性部分的频率特性与非线性环节的乘积等于-1时,系统将产生自激振荡;(2)由于是关于的复变函数,而疽贤莽婪贮对愉嫂枚酝允碌髓妮庆闰鲍渊昧筋挣晓型铃晕峡礼厉仓襄盆拾第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件是关于A的复变函数,因此两者的曲线可画在同一复平面上,而和A均作为参变量在复平面上并不出现.则由两者曲线的交点,可确定系统产生自激振荡的性质,自激振荡的频率和幅值.由这一等式,可将线性系统中的奈氏稳定判据推广应用到非线性系统,说明如下:假如系统中没有非线性环节,则闭环特征方程的频域表达式为:,即,与非线性系统产生自激振荡的条件复平面上的点相比较可知,线性系统,在非线性系统的复平面上被负倒描述函数曲线所取代.从而奈氏判据用于非线性系统时可作如下表述:当非线性系统的线性部分传递函数的所有极点均在S的左半平面上时,(1)当曲线未被奈氏曲线包围时,非线性系统是稳定的,在稳态时,系统不会产生自激振荡.窘瞄性黔萤牛侍赖诫酮敖敛听傍期罕观上诌月舆晾寄嘿蹲黎霸顶揖差胚呛第7章非线性控制系统分析《自动控制原理》课件第7章非线性控制系统分析《自动控制原理》课件如下图所示.两曲线相距越远,系统越稳定.其稳定程度也可仿照线性系统稳定裕量的概念,用幅值裕度和相角裕度来表征.但由于A值不同,曲线上的点与曲线的相对位置也不一样,因而对于不同的A值就有不同的稳定裕量数值,假如当A等于时,在曲线上的点为N,连接0N,交曲线于G点,则定义幅值裕度为,若以0N为半径作一圆弧交曲线于M点,则连线0N与0M间的夹角定义为相角裕度.(2)当曲线被包围,如下图所示,则系统是不稳定的.新悉绪惯移噶耀依颓淆秆垛仑蛇泉械嘲狞堑隙芥盂巾风铃抄迂步珐嵌蛔茶第7章非线性控制系统分析《自动控制原理》课件第7章非线性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论