




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页中考数学总复习《图形的性质解答题-》专项检测卷含答案学校:___________班级:___________姓名:___________考号:___________一、解答题1.(2023·江苏南通·中考真题)如图,点,分别在,上,,,相交于点,.求证:.小虎同学的证明过程如下:证明:∵,∴.∵,∴.第一步又,,∴第二步∴第三步
(1)小虎同学的证明过程中,第___________步出现错误;(2)请写出正确的证明过程.2.(2022·江苏淮安·中考真题)如图,已知线段和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段的垂直平分线,交线段于点;②以线段为对角线,作矩形,使得,并且点在线段的上方.(2)当,时,求(1)中所作矩形的面积.3.(2023·江苏苏州·中考真题)如图,在中,为的角平分线.以点圆心,长为半径画弧,与分别交于点,连接.
(1)求证:;(2)若,求的度数.4.(2023·江苏·中考真题)如图,、、、是直线上的四点,.
(1)求证:;(2)点、分别是、的内心.①用直尺和圆规作出点(保留作图痕迹,不要求写作法);②连接,则与的关系是________.5.(2023·江苏盐城·中考真题)如图,,,.(1)求证:;(2)用直尺和圆规作图:过点作,垂足为.(不写作法,保留作图痕迹)6.(2024·江苏盐城·中考真题)已知:如图,点A、B、C、D在同一条直线上,,.若________,则.请从①;②;③这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.7.(2024·江苏常州·中考真题)如图,B、E、C、F是直线l上的四点,相交于点G,,,.(1)求证:是等腰三角形;(2)连接,则与l的位置关系是________.8.(2024·江苏无锡·中考真题)如图,在矩形中,是的中点,连接.求证:(1);(2).9.(2024·江苏徐州·中考真题)已知:如图,四边形为正方形,点E在的延长线上,连接.(1)求证:;(2)若,求证:.10.(2022·江苏泰州·中考真题)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动矩形ABCD随之运动,运动时间为t秒
(1)如图2,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当AD、BC都与半圆O相交,设这两个交点为G、H连接OG,OH.若∠GOH为直角,求此时t的值.11.(2022·江苏常州·中考真题)在四边形中,是边上的一点.若,则点叫做该四边形的“等形点”.(1)正方形_______“等形点”(填“存在”或“不存在”);(2)如图,在四边形中,边上的点是四边形的“等形点”.已知,,,连接,求的长;(3)在四边形中,EH//FG.若边上的点是四边形的“等形点”,求的值.12.(2023·江苏扬州·中考真题)如图,在中,,点D是上一点,且,点O在上,以点O为圆心的圆经过C、D两点.
(1)试判断直线与的位置关系,并说明理由;(2)若的半径为3,求的长.13.(2023·江苏扬州·中考真题)如图,点E、F、G、H分别是各边的中点,连接相交于点M,连接相交于点N.
(1)求证:四边形是平行四边形;(2)若的面积为4,求的面积.14.(2023·江苏连云港·中考真题)如图,在中,,以为直径的交边于点,连接,过点作.
(1)请用无刻度的直尺和圆规作图:过点作的切线,交于点;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:.15.(2023·江苏徐州·中考真题)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉璧,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.16.(2023·江苏无锡·中考真题)如图,已知,点M是上的一个定点.
(1)尺规作图:请在图1中作,使得与射线相切于点M,同时与相切,切点记为N;(2)在(1)的条件下,若,则所作的的劣弧与所围成图形的面积是_________.17.(2023·江苏无锡·中考真题)如图,AB是的直径,CD与AB相交于点.过点的圆O的切线,交CA的延长线于点,.
(1)求的度数;(2)若,求的半径.18.(2023·江苏泰州·中考真题)如图,是五边形的一边,若垂直平分,垂足为,且____________,____________,则____________.给出下列信息:①平分;②;③.请从中选择适当信息,将对应的序号填到横线上方,使之构成真命题,补全图形,并加以证明.
19.(2023·江苏宿迁·中考真题)如图,在矩形中,,,垂足分别为E、F.求证:.20.(2023·江苏宿迁·中考真题)如图,在中,,,.
(1)求出对角线的长;(2)尺规作图:将四边形沿着经过点的某条直线翻折,使点落在边上的点处,请作出折痕.(不写作法,保留作图痕迹)21.(2023·江苏宿迁·中考真题)(1)如图,是的直径,与交于点F,弦平分,点E在上,连接、,________.求证:________.
从①与相切;②中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程.(2)在(1)的前提下,若,,求阴影部分的面积.22.(2023·江苏·中考真题)已知:如图,点为线段上一点,,,.求证:.
23.(2023·江苏南通·中考真题)如图,等腰三角形的顶角,和底边相切于点,并与两腰,分别相交于,两点,连接,.
(1)求证:四边形是菱形;(2)若的半径为2,求图中阴影部分的面积.24.(2023·江苏·中考真题)如图,在中,.
(1)尺规作图:作,使得圆心在边上,过点且与边相切于点(请保留作图痕迹,标明相应的字母,不写作法);(2)在(1)的条件下,若,求与重叠部分的面积.25.(2023·江苏镇江·中考真题)如图,B是AC的中点,点D,E在同侧,,.(1)求证:≌.(2)连接,求证:四边形是平行四边形.26.(2023·江苏镇江·中考真题)如图,将矩形沿对角线翻折,的对应点为点,以矩形的顶点为圆心、为半径画圆,与相切于点,延长交于点,连接交于点.
(1)求证:.(2)当,时,求的长.27.(2023·江苏盐城·中考真题)如图,在中,是上(异于点,)的一点,恰好经过点,,于点,且平分.
(1)判断与的位置关系,并说明理由;(2)若,,求的半径长.28.(2023·江苏南京·中考真题)如图,在中,点M,N分别在边,AD上,且,对角线BD分别交,于点E,F.求证.29.(2024·江苏连云港·中考真题)如图,与相交于点,,.(1)求证:;(2)用无刻度的直尺和圆规作图:求作菱形,使得点M在上,点N在上.(不写作法,保留作图痕迹,标明字母)30.(2024·江苏连云港·中考真题)图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城的边长为,南门设立在边的正中央,游乐城南侧有一条东西走向的道路,在上(门宽及门与道路间距离忽略不计),东侧有一条南北走向的道路,C处有一座雕塑.在处测得雕塑在北偏东方向上,在处测得雕塑在北偏东方向上.(1)__________,__________;(2)求点到道路的距离;(3)若该小组成员小李出南门O后沿道路向东行走,求她离处不超过多少千米,才能确保观察雕塑不会受到游乐城的影响?(结果精确到,参考数据:,,,,)31.(2024·江苏盐城·中考真题)小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C坐标.32.(2024·江苏扬州·中考真题)如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形.(1)试判断四边形的形状,并说明理由;(2)已知矩形纸条宽度为,将矩形纸条旋转至如图2位置时,四边形的面积为,求此时直线所夹锐角的度数.33.(2024·江苏扬州·中考真题)如图,已知及边上一点.(1)用无刻度直尺和圆规在射线上求作点,使得;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点为圆心,以为半径的圆交射线于点,用无刻度直尺和圆规在射线上求作点,使点到点的距离与点到射线的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若,,求BM的长.34.(2024·江苏苏州·中考真题)如图,中,,分别以B,C为圆心,大于长为半径画弧,两弧交于点D,连接,,,与交于点E.(1)求证:;(2)若,,求的长.35.(2024·江苏苏州·中考真题)图①是某种可调节支撑架,为水平固定杆,竖直固定杆,活动杆可绕点A旋转,为液压可伸缩支撑杆,已知,,.(1)如图②,当活动杆处于水平状态时,求可伸缩支撑杆的长度(结果保留根号);(2)如图③,当活动杆绕点A由水平状态按逆时针方向旋转角度,且(为锐角),求此时可伸缩支撑杆的长度(结果保留根号).36.(2024·江苏宿迁·中考真题)如图,在中,是直径,是弦,且,垂足为,,,在的延长线上取一点,连接,使.
(1)求证:是的切线;(2)求的长.37.(2024·江苏宿迁·中考真题)如图,在四边形中,,且,是的中点.下面是甲、乙两名同学得到的结论:甲:若连接,则四边形是菱形;乙:若连接,则是直角三角形.请选择一名同学的结论给予证明.38.(2024·江苏镇江·中考真题)如图,,.
(1)求证:;(2)若,则__________°.39.(2024·江苏镇江·中考真题)如图,将沿过点的直线翻折并展开,点的对应点落在边上,折痕为,点在边上,经过点、.若,判断与的位置关系,并说明理由.40.(2024·江苏镇江·中考真题)图1、2是一个折叠梯的实物图.图3是折叠梯展开、折叠过程中的一个主视图.图4是折叠梯充分展开后的主视图,此时点E落在上,已知,,点D、F、G、J在上,、、、均与所在直线平行,,.点N在上,、的长度固定不变.图5是折叠梯完全折叠时的主视图,此时、重合,点、、、、、在上的位置如图所示.【分析问题】(1)如图5,用图中的线段填空:_________;(2)如图4,_________,由,且的长度不变,可得与之间的数量关系为_________;【解决问题】(3)求的长.41.(2024·江苏南通·中考真题)如图,点D在的边AB上,经过边的中点E,且.求证.42.(2024·江苏南通·中考真题)如图,中,,,,与相切于点D.
(1)求图中阴影部分的面积;(2)设上有一动点P,连接,.当的长最大时,求的长.43.(2022·江苏连云港·中考真题)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中,,.【问题探究】小昕同学将三角板绕点B按顺时针方向旋转.(1)如图2,当点落在边上时,延长交于点,求的长.(2)若点、、在同一条直线上,求点到直线的距离.(3)连接,取的中点,三角板由初始位置(图1),旋转到点、、首次在同一条直线上(如图3),求点所经过的路径长.(4)如图4,为的中点,则在旋转过程中,点到直线的距离的最大值是_____.44.(2022·江苏常州·中考真题)(现有若干张相同的半圆形纸片,点是圆心,直径的长是,是半圆弧上的一点(点与点、不重合),连接、.(1)沿、剪下,则是______三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点、和直径上的点、.已知剪下的由这四个点顺次连接构成的四边形是一个边长为的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点,一定存在线段上的点、线段上的点和直径上的点、,使得由这四个点顺次连接构成的四边形是一个边长为的菱形.小明的猜想是否正确?请说明理由.45.(2022·江苏盐城·中考真题)【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在中,,四边形、和分别是以的三边为一边的正方形.延长和,交于点,连接并延长交于点,交于点,延长交于点.(1)证明:;(2)证明:正方形的面积等于四边形的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形和分别是以的两边为一边的平行四边形,探索在下方是否存在平行四边形,使得该平行四边形的面积等于平行四边形、的面积之和.若存在,作出满足条件的平行四边形(保留适当的作图痕迹);若不存在,请说明理由.46.(2022·江苏盐城·中考真题)【发现问题】小明在练习簿的横线上取点为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图像上.(1)【分析问题】小明利用已学知识和经验,以圆心为原点,过点的横线所在直线为轴,过点且垂直于横线的直线为轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________.(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点,为正整数,以为直径画,是否存在所描的点在上.若存在,求的值;若不存在,说明理由.47.(2022·江苏镇江·中考真题)操作探究题(1)已知是半圆的直径,(是正整数,且不是3的倍数)是半圆的一个圆心角.操作:如图1,分别将半圆的圆心角(取1、4、5、10)所对的弧三等分(要求:仅用圆规作图,不写作法,保留作图痕迹);交流:当时,可以仅用圆规将半圆的圆心角所对的弧三等分吗?探究:你认为当满足什么条件时,就可以仅用圆规将半圆的圆心角所对的弧三等分?说说你的理由.(2)如图2,的圆周角.为了将这个圆的圆周14等分,请作出它的一条14等分弧(要求:仅用圆规作图,不写作法,保留作图痕迹).48.(2022·江苏淮安·中考真题)在数学兴趣小组活动中,同学们对菱形的折叠问题进行了探究.如图(1),在菱形中,为锐角,为中点,连接,将菱形沿折叠,得到四边形,点的对应点为点,点的对应点为点.(1)【观察发现】与的位置关系是______;(2)【思考表达】连接,判断与是否相等,并说明理由;(3)如图(2),延长交于点,连接,请探究的度数,并说明理由;(4)【综合运用】如图(3),当时,连接,延长交于点,连接,请写出、、之间的数量关系,并说明理由.参考答案:1.(1)二(2)见解析【分析】(1)根据证明过程即可求解.(2)利用全等三角形的判定及性质即可求证结论.【详解】(1)解:则小虎同学的证明过程中,第二步出现错误,故答案为:二.(2)证明:∵,,在和中,,,,在和中,,,.【点睛】本题考查了全等三角形的判定及性质,熟练掌握其判定及性质是解题的关键.2.(1)①见解析;②见解析(2)矩形的面积为【分析】(1)①分别以点A,为圆心,以大于为半径画弧,两弧分别交于点,,作直线与线段交于点O,则所在直线为线段的垂直平分线;②以点O为圆心,的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段上方交于点B,同理,以点O为圆心,的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段下方交于点D,连接,即可得矩形.(2)根据矩形的性质可知道,根据勾股定理可求出的长度,由此即可求出矩形的面积.【详解】(1)解:①线段的垂直平分线,如图所示,②如图,矩形ABCD即为所求.(2)解:如图所示,∵在矩形中,,,,∴在中,,∴矩形的面积是,故答案是:.【点睛】本题主要考查垂直平分线,矩形的性质,勾股定理,掌握垂直平分线,矩形的性质,勾股定理是解题的关键.3.(1)见解析(2)【分析】(1)根据角平分线的定义得出,由作图可得,即可证明;(2)根据角平分线的定义得出,由作图得出,则根据三角形内角和定理以及等腰三角形的性质得出,,进而即可求解.【详解】(1)证明:∵为的角平分线,∴,由作图可得,在和中,,∴;(2)∵,为的角平分线,∴由作图可得,∴,∵,为的角平分线,∴,∴【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,角平分线的定义,熟练掌握等腰三角形的性质与判定是解题的关键.4.(1)见解析(2)①见解析
②【分析】本题主要考查全等三角形的判定、图形的平移,牢记全等三角形的判定方法和图形平移的性质(连接各组对应点的线段平行或在同一条直线上)是解题的关键.(1)可证得,结合,即可证明结论.(2)①三角形的内心为三角形的三个角的角平分线的交点,因此只需作出任意两个角的角平分线,其交点即为所求.②因为,所以可看作由平移得到,点,点为对应点,点,点为对应点,据此即可求得答案.【详解】(1)∵,,,∴.在和中∴.(2)①三角形的内心为三角形的三个角的平分线的交点,作,的角平分线,其交点即为点.
②因为,所以可看作由平移得到,点,点为对应点,点,点为对应点,根据平移的性质可知.故答案为:.5.(1)见解析(2)见解析【分析】(1)根据边角边证明即可证明结论成立;(2)根据过直线外一点向直线最垂线的作法得出即可.【详解】(1)证明:∵,,,∴,∴;(2)解:所作图形如图,.
【点睛】本题主要考查了全等三角形的判定和性质,过直线外一点向直线最垂线的作法,熟练记忆正确作法是解题关键.6.①或③(答案不唯一),证明见解析【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,再由全等三角形的判定和性质得出,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.【详解】解:选择①;∵,,∴,∵,∴,∴,∴,即;选择②;无法证明,无法得出;选择③;∵,∴,∵,,∴,∴,∴,即;故答案为:①或③(答案不唯一)7.(1)见解析(2)【分析】本题考查全等三角形的判定和性质,等腰三角形的判定,平行线的判定:(1)证明,得到,即可得证;(2)根据线段的和差关系,易得,根据三角形的内角和定理,得到,即可得出结论.【详解】(1)证明:在和中,∴,∴,∴,∴是等腰三角形;(2)∵,,∴,∴,∴,∵,∵,∴,∴.8.(1)见解析(2)见解析【分析】本题考查了矩形的性质,全等三角形的判定和性质,等边对等角.(1)根据矩形的性质得出,再根据中点的定义得出,即可根据求证;(2)根据全等的性质得出,根据等边对等角即可求证.【详解】(1)证明:∵四边形是矩形,∴,∵是的中点,∴,在和中,,∴(2)证明:∵,∴,∴.9.(1)详见解析(2)详见解析【分析】本题主要考查了正方形的性质和全等三角形的判定与性质,解题关键是正确识别图形,理解角与角之间的关系,熟练找出和的全等条件.(1)根据正方形的性质证明,然后根据全等三角形的判定定理进行证明即可;(2)根据正方形的性质和全等三角形的性质,求出和,然后进行证明即可.【详解】(1)证明:∵四边形为正方形,,在和中,,;(2)∵四边形为正方形,,,,,,,.10.(1)(2)8或9秒【分析】(1)通过计算当t=2.5时EB=BO,进而得到△MBE≌△MBO,判断出△MEO为等边三角形得到∠EOM=60°,然后根据弧长公式求解;(2)通过判定△GAO≌△HBO,然后利用全等三角形的性质分析求解.【详解】(1)解:设BC与⊙O交于点M,如下图所示:
当t=2.5时,BE=2.5,∵EF=10,∴OE=EF=5,∴OB=2.5,∴EB=OB,在正方形ABCD中,∠EBM=∠OBM=90°,且MB=MB,∴△MBE≌△MBO(SAS),∴ME=MO,∴ME=EO=MO,∴△MOE是等边三角形,∴∠EOM=60°,∴.(2)解:连接GO和HO,如下图所示:
∵∠GOH=90°,∴∠AOG+∠BOH=90°,∵∠AOG+∠AGO=90°,∴∠AGO=∠BOH,在△AGO和△OBH中,,∴△AGO≌△BOH(AAS),∴AG=OB=BE-EO=t-5,∵AB=7,∴AE=BE-AB=t-7,∴AO=EO-AE=5-(t-7)=12-t,在Rt△AGO中,AG2+AO2=OG2,∴(t-5)2+(12-t)2=52,解得:t1=8,t2=9,即t的值为8或9秒.【点睛】本题考查全等三角形的判定和性质,弧长公式的计算,勾股定理的应用,掌握全等三角形的判定(一线三垂直模型),结合勾股定理列方程是解题关键.11.(1)不存在,理由见详解(2)(3)1【分析】(1)根据“等形点”的概念,采用反证法即可判断;(2)过A点作AM⊥BC于点M,根据“等形点”的性质可得AB=CD=,OA=OC=5,OB=7=OD,设MO=a,则BM=BO-MO=7-a,在Rt△ABM和Rt△AOM中,利用勾股定理即可求出AM,则在Rt△AMC中利用勾股定理即可求出AC;(3)根据“等形点”的性质可得OF=OH,OE=OG,∠EOF=∠GOH,再根据,可得∠EOF=∠OEH,∠GOH=∠EHO,即有∠OEH=∠OHE,进而有OE=OH,可得OF=OG,则问题得解.【详解】(1)不存在,理由如下:假设正方形ABCD存在“等形点”点O,即存在△OAB≌△OCD,∵在正方形ABCD中,点O在边BC上,∴∠ABO=90°,∵△OAB≌△OCD,∴∠ABO=∠CDO=90°,∴CD⊥DO,∵CD⊥BC,∴,∵O点在BC上,∴DO与BC交于点O,∴假设不成立,故正方形不存在“等形点”;(2)如图,过A点作AM⊥BC于点M,如图,∵O点是四边形ABCD的“等形点”,∴△OAB≌△OCD,∴AB=CD,OA=OC,OB=OD,∠AOB=∠COD,∵,OA=5,BC=12,∴AB=CD=,OA=OC=5,∴OB=BC-OC=12-5=7=OD,∵AM⊥BC,∴∠AMO=90°=∠AMB,∴设MO=a,则BM=BO-MO=7-a,∴在Rt△ABM和Rt△AOM中,,∴,即,解得:,即,∴MC=MO+OC=,∴在Rt△AMC中,,即AC的长为;(3)如图,∵O点是四边形EFGH的“等形点”,∴△OEF≌△OGH,∴OF=OH,OE=OG,∠EOF=∠GOH,∵,∴∠EOF=∠OEH,∠GOH=∠EHO,∴根据∠EOF=∠GOH有∠OEH=∠OHE,∴OE=OH,∵OF=OH,OE=OG,∴OF=OG,∴.【点睛】本题考查了全等三角形的性质、勾股定理、正方形的性质、平行的性质等知识,充分利用全等三角形的性质是解答本题的关键.12.(1)直线与相切,理由见解析(2)6【分析】(1)连接,根据圆周角定理,得到,进而得到,即可得出与相切;(2)解直角三角形,求出的长,进而求出的长,再解直角三角形,求出的长即可.【详解】(1)解:直线与相切,理由如下:连接,则:,
∵,即:,∴,∵,∴,∴,∴,∵为的半径,∴直线与相切;(2)解:∵,的半径为3,∴,∴,∴,∵,∴,设:,则:,∴,∴.【点睛】本题考查切线的判定,解直角三角形.熟练掌握切线的判定方法,正弦的定义,是解题的关键.13.(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形,四边形均为平行四边形,进而得到:,即可得证;(2)连接,推出,,进而得到,求出,再根据,即可得解.【详解】(1)证明:∵,∴,∵点E、F、G、H分别是各边的中点,∴,∴四边形为平行四边形,同理可得:四边形为平行四边形,∴,∴四边形是平行四边形;(2)解:连接,
∵为的中点,∴,∴,∴,∴,同理可得:∴,∴,∵,∴.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.14.(1)见解析(2)见解析【分析】(1)根据尺规作图,过点作的垂线,交于点,即可求解;(2)根据题意切线的性质以及直径所对的圆周角是直角,证明,根据平行线的性质以及等腰三角形的性质得出,进而证明,即可得证.【详解】(1)解:方法不唯一,如图所示.
(2)∵,∴.又∵,∴,∴.∵点在以为直径的圆上,∴,∴.又∵为的切线,∴.∵,∴,∴,∴.∵在和中,∴.∴.【点睛】本题考查了作圆的切线,切线的性质,直径所对的圆周角是直角,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.15.(1)(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为;环的“肉”的面积为,∴它们的面积之比为;故答案为;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A、B、C,则分别以A、B为圆心,大于长为半径画弧,交于两点,连接这两点,同理可画出线段的垂直平分线,线段的垂直平分线的交点即为圆心O,过圆心O画一条直径,以O为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可
由作图可知满足比例关系为的关系;②按照①中作出圆的圆心O,过圆心画一条直径,过点A作一条射线,然后以A为圆心,适当长为半径画弧,把射线三等分,交点分别为C、D、E,连接,然后分别过点C、D作的平行线,交于点F、G,进而以为直径画圆,则问题得解;如图所示:
【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.16.(1)见解析(2)【分析】(1)先作的平分线,再过M点作的垂线交于点O,接着过O点作于N点,然后以O点为圆心,为半径作圆,则满足条件;(2)先利用切线的性质得到,,根据切线长定理得到,则,再利用含30度角的直角三角形三边的关系计算出,然后根据扇形的面积公式,利用的劣弧与所围成图形的面积进行计算.【详解】(1)解:如图,为所作;
;(2)解:∵和为的切线,∴,,,∴,∴,在中,,∴,∴的劣弧与所围成图形的面积.故答案为:.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定与性质、扇形的面积计算.17.(1)(2)【分析】(1)连接,根据为的切线,则,由,则,根据圆周角定理可得,又,根据等边对等角以及三角形内角和定理即可求解;(2)证明,根据相似三角形的性质,代入数据即可求解.【详解】(1)如图,连接.
为的切线,.,.,.,.(2)如图,连接AD,,,.,,且,,,即,,,即半径为.【点睛】本题考查了切线的性质,圆周角定理,等边对等角,三角形内角和定理,相似三角形的性质与判定等知识.正确作出辅助线是解题关键.18.②③,①或①②,③;证明见详解【分析】情况一:根据题意补全图形,连接、,根据线段垂直平分线的性质可得出,最后利用全等三角形的判定与性质即可解答;情况二:根据题意补全部图形,连接、,根据线段垂直平分线的性质可得出,再利用全等三角形的判定与性质可知,最后利用角平分线的定义及全等三角形的判定与性质即可解答.【详解】情况一:,,证明:根据题意补全图形如图所示:
∵垂直平分,∴,在与中,,∴,∴,在与中,,∴,∴,∵,∴,即,∴平分;故答案为:.情况二:,,证明:根据题意补全图形如图所示:∵垂直平分,∴,在与中,,∴,∴,∵平分,∴,∴,∴,在和中,,∴,∴.故答案为:②③,①或①②,③【点睛】本题主要考查了线段垂直平分线的性质,三角形全等的判定与性质,角平分线的定义,角的和差关系,熟练掌握线段垂直平分线的性质是解题的关键.19.证明见解析【分析】根据定理证出,再根据全等三角形的性质即可得证.【详解】证明:四边形是矩形,,,,,,在和中,,,.【点睛】本题考查了矩形的性质、三角形全等的判定与性质等知识点,熟练掌握矩形的性质是解题关键.20.(1)(2)作图见解析【分析】(1)连接,过作于,如图所示,由勾股定理先求出,在中再由勾股定理,;(2)连接,根据轴对称性质,过点尺规作图作线段的垂直平分线即可得到答案.【详解】(1)解:连接,过作于,如图所示:
在中,,,,,,在中,,,,则;(2)解:如图所示:
【点睛】本题考查平行四边形背景下求线段长,涉及勾股定理、尺规作图作线段垂直平分线,熟练掌握勾股定理求线段长及中垂线的尺规作图是解决问题的关键.21.(1)②①,证明见解析(或①②,证明见解析)(2)【分析】(1)一:已知条件为②,结论为①与相切;连接,先证出,再根据平行线的性质可得,然后根据圆的切线的判定即可得证;二:已知条件为①与相切,结论为②;连接,先证出,再根据圆的切线的性质可得,然后根据平行线的性质即可得证;(2)连接,先解直角三角形求出的长,再根据等边三角形的判定与性质可得的长,从而可得的长,然后根据圆周角定理可得,最后根据阴影部分的面积等于直角梯形的面积减去扇形的面积即可得.【详解】解:(1)一:已知条件为②,结论为①与相切,证明如下:如图,连接,
,,弦平分,,,,,,又是的半径,与相切;二:已知条件为①与相切,结论为②,证明如下:如图,连接,
,,弦平分,,,,与相切,,;(2)如图,连接,
,,,,,又,,是等边三角形,,,由圆周角定理得:,则阴影部分的面积为.【点睛】本题考查了圆的切线的判定与性质、解直角三角形、扇形的面积、圆周角定理等知识点,熟练掌握圆的切线的判定与性质是解题关键.22.证明见详解;【分析】根据得到,结合,,即可得到即可得到证明.【详解】证明:∵,∴,∵,∴,∴.【点睛】本题考查三角形全等的判定与性质,解题的关键是根据平行线得到三角形全等判定的条件.23.(1)见解析(2)【分析】(1)连接,根据切线的性质可得,然后利用等腰三角形的三线合一性质可得,从而可得和都是等边三角形,最后利用等边三角形的性质可得,即可解答;(2)连接交于点,利用菱形的性质可得,,,然后在中,利用勾股定理求出的长,从而求出的长,最后根据图中阴影部分的面积扇形的面积菱形的面积,进行计算即可解答.【详解】(1)证明:连接,
和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形;(2)解:连接交于点,
四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.(1)见解析(2)【分析】(1)作的角平分线交于点,过点作,交于点,以为圆心,为半径作,即可;(2)根据含30度角的直角三角形的性质,求得圆的半径,设交于点,连接,可得是等边三角形,进而根据与重叠部分的面积等于扇形面积与等边三角形的面积和,即可求解.【详解】(1)解:如图所示,即为所求;
(2)解:∵,是的切线,∴,∴,则,解得:,如图所示,设交于点,连接,
∵,∴是等边三角形,如图所示,过点作于点,
∴∴在中,,∴,∴,则,∴与重叠部分的面积为.【点睛】本题考查了基本作图,切线的性质,求扇形面积,熟练掌握基本作图与切线的性质是解题的关键.25.(1)见解析(2)见解析【分析】(1)由B是的中点得,结合,,根据全等三角形的判定定理“”即可证明≌;(2)由(1)中≌得,进一步得,再结合,根据一组对边平行且相等的四边形是平行四边形即可证明.【详解】(1)解:∵B是的中点,∴.在和中,∴≌().(2)如图所示,∵≌,∴,∴.又∵,∴四边形是平行四边形.【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定,熟练掌握全等三角形的判定方法与性质是解题的关键.26.(1)见解析(2)【分析】(1)连接,由切线的性质得,则,由矩形的性质得,再由直角三角形两锐角互余得,根据对顶角相等和同圆的半径相等得,,然后由等角的余角相等得,最后由等角对等边得出结论;(2)由锐角三角函数得,,得,由翻折得,由得,再由矩形对边相等得,最后在中解直角三角形即可得出结论.【详解】(1)证明:如图,连接.
∵与相切于点E,∴,∴.∵四边形是矩形,∴,∴.∵,∴.∵,∴,∴.(2)解:在中,,,∴,∴,∵四边形是矩形,∴,由翻折可知,,∵四边形是矩形,∴,在中,,∴.【点睛】本题是四边形与圆的综合题,考查了矩形的性质、切线的性质、翻折的有关性质、锐角三角函数的定义,正确作出辅助线,巧用解直角三角形是解答本题的关键.27.(1)见解析(2)的半径长为.【分析】(1)连接,证明,即可证得,从而证得是圆的切线;(2)设,则,利用勾股定理求得,推出,利用相似三角形的性质列得比例式,据此求解即可.【详解】(1)证明:连接,如下图所示,
∵是的平分线,∴,又∵,∴,∴,∴,∴,即,又∵过半径的外端点B,∴与相切;(2)解:设,则,∵在中,,,,∴,∵,∴,∴,即,解得.故的半径长为.【点睛】本题考查了切线的判定,相似三角形的判定和性质,以及勾股定理,熟练掌握切线的判定是解本题的关键.28.见解析【分析】本题考查了平行四边形的性质,全等三角形的判定和性质,正确地找出辅助线是解题的关键.连接交BD于O,根据平行四边形的性质得到,BO=DO,根据全等三角形的性质得到,于是得到结论.【详解】证明:连接交BD于O,∵四边形是平行四边形,∴,BO=DO,∵,∴,在与中,,∴,∴,∴,∴.29.(1)见解析(2)见解析【分析】(1)根据平行线的性质得到,结合,利用即可证明;(2)作的垂直平分线,分别交于点,连接即可.【详解】(1)证明:,,.在和中,,;(2)解:是的垂直平分线,,由(1)的结论可知,,又∵,则,∴,是的垂直平分线,,,四边形是菱形,如图所示,菱形为所求.【点睛】本题考查了垂直平分线的作法,平行线的性质,三角形全等的判定,菱形的判定,熟练掌握垂直平分线的作法及三角形全等的判定定理是解题的关键.30.(1),(2)2.0千米(3)【分析】本题考查正多边形的外角,解直角三角形,相似三角形的判定和性质:(1)求出正八边形的一个外角的度数,再根据角的和差关系进行求解即可;(2)过点作,垂足为,解,求出,解,求出,即可;(3)连接并延长交于点,延长交于点,过点作,垂足为,解,求出,证明,列出比例式进行求解即可.【详解】(1)解:∵正八边形的一个外角的度数为:,∴,;故答案为:;(2)过点作,垂足为.在中,,,.在中,,.答:点到道路的距离为2.0千米.(3)连接并延长交于点,延长交于点,过点作,垂足为.正八边形的外角均为,在中,..又,,.∵,∴,,即,,.答:小李离点不超过2.4km,才能确保观察雕塑不会受到游乐城的影响.31.(1)(2)【分析】本题考查反比例函数、锐角三角函数:(1)设反比例函数表达式为,将点A的坐标代入表达式求出k值即可;(2)设点C的坐标为,则,,根据平行线的性质得,进而根据求出m的值即可.【详解】(1)解:由图可知点A的坐标为−3,2,设反比例函数表达式为,将−3,2代入,得:,解得,因此反比例函数表达式为;(2)解:如图,作轴于点E,轴于点D,由图可得,,设点C的坐标为,则,,,矩形直尺对边平行,,,,即,解得或,点C在第二象限,,,点C坐标为.32.(1)四边形是菱形,理由见详解(2)【分析】本题主要考查矩形的性质,菱形的判定和性质,全等三角形的判定和性质,三角函数,掌握菱形的判定和性质是解题的关键.(1)根据矩形的性质可得四边形是平行四边形,作,可证,可得,由此可证平行四边形是菱形;(2)作,根据面积的计算方法可得,结合菱形的性质可得,根据含30°的直角三角形的性质即可求解.【详解】(1)解:四边形是菱形,理由如下,如图所示,过点作于点,过点作于点,根据题意,四边形EFGH,四边形是矩形,∴,∴,∴四边形是平行四边形,∵宽度相等,即,且,∴,∴,∴平行四边形是菱形;(2)解:如图所示,过点作于点,根据题意,,∵,∴,由(1)可得四边形是菱形,∴,在中,,即,∴.33.(1)作图见详解(2)作图见详解(3)【分析】(1)根据尺规作角等于已知角的方法即可求解;(2)根据尺规作圆,作垂线的方法即可求解;(3)根据作图可得是直径,结合锐角三角函数的定义可得的值,根据勾股定理可求出的值,在直角中运用勾股定理即可求解.【详解】(1)解:如图所示,∴;点O即为所求(2)解:如图所示,连接,以点为圆心,以为半径画弧交于点,以点为圆心,以任意长为半径画弧交于点,分别以点为圆心,以大于为半径画弧,交于点,连接并延长交于点,∵AB是直径,∴,即,根据作图可得,∴,即,是点到的距离,∵,∴,∴,点即为所求点的位置;(3)解:如图所示,根据作图可得,,连接,∴在中,,∴,∴,∵AB是直径,∴,∴,设,则,∴在中,,解得,x=2(负值舍去),∴,在中,.【点睛】本题主要考查尺规作角等于已知角,尺规作垂线,勾股定理,锐角三角函数的定义等知识的综合,掌握以上知识的综合运用是解题的关键.34.(1)见解析(2)【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关键是:(1)直接利用证明即可;(2)利用全等三角形的性质可求出,利用三线合一性质得出,,在中,利用正弦定义求出,即可求解.【详解】(1)证明:由作图知:.在和中,.(2)解:,,.又,,.,,.35.(1)(2)【分析】本题考查了解直角三角形的应用,解题的关键是:(1)过点C作,垂足为E,判断四边形为矩形,可求出,,然后在中,根据勾股定理求出即可;(2)过点D作,交的延长线于点F,交于点G.判断四边形为矩形,得出.在中,利用正切定义求出.利用勾股定理求出,由,可求出,,,.在中,根据勾股定理求出即可.【详解】(1)解:如图,过点C作,垂足为E,由题意可知,,又,四边形为矩形.,,,.,.在中,.即可伸缩支撑杆的长度为;(2)解:过点D作,交的延长线于点F,交于点G.由题意可知,四边形为矩形,.在中,,.,,,.,,,.在中,.即可伸缩支撑杆的长度为.36.(1)见解析(2)【分析】本题考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,圆周角定理,正确地作出辅助线是解题的关键.(1)连接,根据等腰三角形的性质得到,等量代换得到,得到,根据切线的判定定理得到结论;(2)根据垂径定理得到,根据勾股定理得到,根据相似三角形的判定和性质定理即可得到结论.【详解】(1)证明:连接,
,,,,,,,,,,是的半径,是的切线;(2)解:是直径,是弦,且,,,,,,,,,,,.37.见解析【分析】选择甲:由,是的中点.得,从而得四边形是平行四边形,再根据,即可证明结论成立;选择乙:连接、DE,DE交于,分别证明四边形是平行四边形,四边形是菱形,得AC⊥DE,,再根据平行线的性质及垂线定义即可得证.【详解】证明:选择甲:如图1,∵,是的中点.∴,∵,∴四边形是平行四边形,∵,∴四边形是菱形;选择乙:如图,连接、DE,DE交于,∵,是的中点.∴,∵,∴四边形是平行四边形,四边形是平行四边形,∵,∴四边形是菱形;∴AC⊥DE,∴,∵四边形是平行四边形,∴∴,∴是直角三角形.【点睛】本题主要考查了菱形、平行四边形的判定及性质、垂线定义、平行线的性质,熟练掌握菱形、平行四边形的判定及性质是解题的关键.38.(1)答案见解析(2)【分析】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定定理是解题的关键.(1)利用即可证得;(2)先根据三角形内角和定理求出的度数,再根据全等三角形的性质即可得出的度数.【详解】(1)证明:在和中,,;(2)解:,,,由(1)知,,故答案为:20.39.与相切,理由见解析【分析】连接,由等腰三角形的性质得,再由折叠的性质得,进而证明,则,因此,然后由切线的判定即可得出结论.【详解】解:与相切.证明:连接.∵,∴.∵图形沿过点A的直线翻折,点C的对应点落在边上,∴.∴.∴.∴由,得,即.∴与相切.【点睛】本题考查直线与圆的位置关系、等腰三角形的性质、折叠的性质以及平行线的判定与性质等知识,熟练掌握切线的判定和折叠的性质是解题的关键.40.(1);(2),;(3)【分析】(1);(2)可推出四边形是平行四边形,从而,从而,进而得出,根据,得出,进一步得出结果;(3)作于,解直角三角形求得和,进而表示出,在直角三角形中根据勾股定理列出方程,进而得出结果.【详解】解:(1),,故答案为:;(2)、、、均与所在直线平行,,,四边形是平行四边形,,,,,,,,,,故答案为:,;(3)如图,作于,,,,,设,则,,,,.【点睛】本题考查了解直角三角形的应用,平行四边形的判定和性质,勾股定理,线段之间的数量关系,解决问题的关键是理解题意,熟练应用有关基础知识.41.见详解【分析】本题主要考查全等三角形的判定和性质以及平行线的判定,根据题意得,即可证明,有成立,根据平行线的判定即可证明结论.【详解】证明:∵点E为边的中点,∴,∵,,∴,∴,∴.42.(1)(2)【分析】本题考查了切线的性质,勾股定理的逆定理,扇形的面积公式等知识,解题的关键是:(1)连接,利用勾股定理的逆定理判定得出,利用切线的性质得出,利用等面积法求出,然后利用求解即可;(2)延长CA交于P,连接,则最大,然后在中,利用勾股定理求解即可.【详解】(1)解∶连接,
∵,,,∴,∴,∵与相切于D,∴,∵,∴,∴;(2)解∶延长CA交于P,连接,此时最大,
由(1)知:,,∴.43.(1)(2)(3)(4)【分析】(1)在Rt△BEF中,根据余弦的定义求解即可;(2)分点在上方和下方两种情况讨论求解即可;(3)取的中点,连接,从而求出OG=,得出点在以为圆心,为半径的圆上,然后根据弧长公式即可求解;(4)由(3)知,点在以为圆心,为半径的圆上,过O作OH⊥AB于H,当G在OH的反向延长线上时,GH最大,即点到直线的距离的最大,在Rt△BOH中求出OH,进而可求GH.【详解】(1)解:由题意得,,∵在中,,,.∴.(2)①当点在上方时,如图一,过点作,垂足为,∵在中,,,,∴,∴.∵在中,,,,,∴.∵点、、在同一直线上,且,∴.又∵在中,,,,∴,∴.∵在中,,∴.②当点在下方时,如图二,在中,∵,,,∴.∴.过点作,垂足为.在中,,∴.综上,点到直线的距离为.(3)解:如图三,取的中点,连接,则.∴点在以为圆心,为半径的圆上.当三角板绕点B顺时针由初始位置旋转到点、B、首次在同一条直线上时,点所经过的轨迹为所对的圆弧,圆弧长为.∴点所经过的路径长为.(4)解:由(3)知,点在以为圆心,为半径的圆上,如图四,过O作OH⊥AB于H,当G在OH的反向延长线上时,GH最大,即点到直线的距离的最大,在Rt△BOH中,∠BHO=90°,∠OBH=30°,,∴,∴,即点到直线的距离的最大值为.【点睛】本题考查了勾股定理,旋转的性质,弧长公式,解直角三角形等知识,分点在上方和下方是解第(2)的关键,确定点G的运动轨迹是解第(3)(4)的关键.44.(1)直角(2)见详解(3)小明的猜想正确,理由见详解【分析】(1)AB是圆的直径,根据圆周角定理可知∠ACB=90°,即可作答;(2)以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可;(3)当点C靠近点A时,设,,可证,推出,分别以M,N为圆心,MN为半径作弧交AB于点P,Q,可得,进而可证四边形MNQP是菱形;当点C靠近点B时,同理可证.【详解】(1)解:如图,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB是直角,即△ABC是直角三角形,故答案为:直角;(2)解:以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可,作图如下:由作图可知AE=EF=FH=HG=OA=AB=6,即四边形EFHG是边长为6cm的菱形;(3)解:小明的猜想正确,理由如下:如图,当点C靠近点A时,设,,∴,∴,∴,∴.分别以M,N为圆心,MN为半径作弧交AB于点P,Q,作于点D,于点E,∴.∵,,,∴,在和中,,∴,∴,∴,又∵,∴四边形MNQP是平行四边形,又∵,∴四边形MNQP是菱形;同理,如图,当点C靠近点B时,采样相同方法可以得到四边形MNQP是菱形,故小明的猜想正确.【点睛】本题考查了圆周角定理、尺规作图、菱形的性质与判定等知识,解题的关键是理解题意,灵活运用上述知识解决问题.45.(1)见解析(2)见解析(3)见解析(4)存在,见解析【分析】(1)根据正方形的性质和SAS证明△ACB≌△HCG,可得结论;(2)证明S△CHG=S△CHL,所以S△AMI=S△CHL,由此可得结论;(3)证明正方形ACHI的面积+正方形BFGC的面积=▱ADJK的面积+▱KJEB的面积=正方形ADEB,可得结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论