




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十一章全等三角形测试1全等三角形的概念和性质学习要求1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会利用全等三角形的性质进行简单的推理和计算,解决某些实际问题.课堂学习检测一、填空题1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-15.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-36.如图1-2,已知△ABE≌△DCE,AE=2cm,BE=1.5cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.10.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5 C.4 D图1-4图1-5图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.拓展、探究、思考16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10测试2三角形全等的条件(一)学习要求1.理解和掌握全等三角形判定方法1——“边边边”,2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.判断_____的_____叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.图2-1图2-2图2-34.已知:如图2-1,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.分析:要证RM平分∠PRQ,即∠PRM=______,只要证______≌______证明:∵M为PQ的中点(已知),∴______=______在△______和△______中,∴______≌______().∴∠PRM=______(______).即RM.5.已知:如图2-2,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.分析:要证∠A=∠D,只要证______≌______.证明:∵BE=CF(),∴BC=______.在△ABC和△DEF中,∴______≌______().∴∠A=∠D(______).6.如图2-3,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.证明:∵CE=DE,EA=EB,∴______+______=______+______,即______=______.在△ABC和△BAD中,=______(已知),∴△ABC≌△BAD().综合、运用、诊断一、解答题7.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图2-48.画一画.已知:如图2-5,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6拓展、探究、思考10.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?测试3三角形全等的条件(二)学习要求1.理解和掌握全等三角形判定方法2——“边角边”.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等图3-1图3-2课堂学习检测一、填空题1.全等三角形判定方法2——“边角边”(即______)指的是_________________________________________________________________________________.2.已知:如图3-1,AB、CD相交于O点,AO=CO,OD=OB.求证:∠D=∠B.分析:要证∠D=∠B,只要证______≌______证明:在△AOD与△COB中,∴△AOD≌△______().∴∠D=∠B(______).3.已知:如图3-2,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵AB∥CD(),∴∠______=∠______(),在△______和△______中,∴Δ______≌Δ______().∴∠______=∠______().∴______∥______().综合、运用、诊断一、解答题4.已知:如图3-3,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-5拓展、探究、思考7.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6测试4三角形全等的条件(三)学习要求1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.(1)全等三角形判定方法3——“角边角”(即______)指的是_________________________________________________________________________________;(2)全等三角形判定方法4——“角角边”(即______)指的是_________________________________________________________________________________.图4-12.已知:如图4-1,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证PA=______,只要证______≌______.证明:在△______与△______中,∴△______≌△______().∴PA=______().∵PM=PN(),∴PM-______=PN-______,即AM=______.3.已知:如图4-2,ACBD.求证:OA=OB,OC=OD.分析:要证OA=OB,OC=OD,只要证______≌______.证明:∵AC∥BD,∴∠C=______.在△______与△______中,∴______≌______().∴OA=OB,OC=OD().图4-2二、选择题4.能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E5.如图4-3,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4-3A.甲和乙 B.乙和丙 C.只有乙 D.只有丙6.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF三、解答题7.阅读下题及一位同学的解答过程:如图4-4,AB和CD相交于点O,且OA=OB,∠A=∠C.那么△AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD≌△COB.证明:在△AOD和△COB中,图4-4∴△AOD≌△COB(ASA).问:这位同学的回答及证明过程正确吗?为什么?综合、应用、诊断8.已知:如图4-5,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.图4-59.已知:如图4-6,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.图4-610.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE=4.求BM、CF的长.拓展、探究、思考11.填空题(1)已知:如图4-7,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ______≌△______,理由为______.(2)已知:如图4-8,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11测试5直角三角形全等的条件学习要求掌握判定直角三角形全等的一种特殊方法一“斜边、直角边”(即“HL”),能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.课堂学习检测一、填空题1.判定两直角三角形全等的“HL”这种特殊方法指的是_____.2.直角三角形全等的判定方法有_____(用简写).3.如图5-1,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.图5-14.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()二、选择题5.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等6.如图5-2,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.图5-2三、解答题7.已知:如图5-3,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.图5-38.已知:如图5-4,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;图5-4综合、运用、诊断9.已知:如图5-5,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.图5-510.已知:如图5-6,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.图5-611.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7拓展、探究、思考12.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()13.(1)已知:如图5-8,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.图5-8(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.测试6三角形全等的条件(四)学习要求能熟练运用三角形全等的判定方法进行推理并解决某些问题.课堂学习检测一、填空题1.两个三角形全等的判定依据除定义外,还有①_____;②_____;③_____;④_____;⑤_____.2.如图6-1,要判定ΔABC≌ΔADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B=∠D,AB=AD();(2)_____,_____();(3)_____,_____();(4)_____,_____();(5)_____,_____();(6)_____,_____();(7)_____,_____().图6-13.如图6-2,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:_________________________________________________________________,理由是:___________________________________________________________________.图6-24.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC=DF,贝ΔABC和ΔDEF是否全等?答:______,理由是______.二、选择题5.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1 B.2 C.3 D.6.如图6-3,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形.A.2 B.3 C.4 D.图6-37.如图6-4,若AB=CD,DE=AF,CF=BE,∠AFB=80°,∠D=60°,则∠B的度数是()A.80° B.60° C.40° D.20°8.如图6-5,△ABC中,若∠B=∠C,BD=CE,CD=BF,则∠EDF=()A.90°-∠A B.C.180°-2∠A D.图6-4图6-5图6-69.下列各组条件中,可保证△ABC与△A'B'C'全等的是()A.∠A=∠A',∠B=∠B',∠C=∠C'B.AB=A'B',AC=A'C',∠B=∠B'C.AB=C'B',∠A=∠B',∠C=∠C'D.CB=A'B',AC=A'C',BA=B'C'10.如图6-6,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN综合、运用、诊断一、解答题11.已知:如图6-7,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.图6-712.已知:如图6-8,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;图6-8(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.13.如图6-9,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?图6-9拓展、探究、思考14.如图6-10,△ABC的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D、E、F,使得△DEF≌△ABC,这样的三角形你能找到几个?请一一画出来.图6-1015.请分别按给出的条件画△ABC(标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么?①∠B=120°,AB=2cm,AC=4cm;②∠B=90°,AB=2cm,AC=3cm;③∠B=30°,AB=2cm,AC=3cm;④∠B=30°,AB=2cm,AC=2cm;⑤∠B=30°,AB=2cm,AC=1cm;⑥∠B=30°,AB=2cm,AC=1.5cm.测试7三角形全等的条件(五)学习要求能熟练运用三角形全等的知识综合解决问题.课堂学习检测解答题1.如图7-1,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50cm,当小敏从水平位置CD下降40cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.图7-12.如图7-2,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.图7-23.如图7-3,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?图7-34.在一池塘边有A、B两棵树,如图7-4.试设计两种方案,测量A、B两棵树之间的距离.方案一: 方案二: 图7-4测试8角的平分线的性质(一)学习要求1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.课堂学习检测一、填空题1._____叫做角的平分线.2.角的平分线的性质是___________________________.它的题设是_________,结论是_____.3.到角的两边距离相等的点,在_____.所以,如果点P到∠AOB两边的距离相等,那么射线OP是_____.4.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.5.(1)三角形的三条角平分线_____它到___________________________.(2)三角形内,到三边距离相等的点是_____.6.如图8-1,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.图8-1二、作图题7.已知:如图8-2,∠AOB.求作:∠AOB的平分线OC.作法:图8-28.已知:如图8-3,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.作法:图8-39.已知:如图8-4,△AB C.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:图8-4综合、运用、诊断一、解答题10.已知:如图8-5,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.图8-511.已知:如图8-6,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.图8-612.已知:如图8-7,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)图8-7拓展、探究、思考13.已知:如图8-8,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?图8-814.已知:如图8-9,四条直线两两相交,相交部分的线段构成正方形ABCD.试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.图8-9测试9角的平分线的性质(二)学习要求熟练运用角的平分线的性质解决问题.课堂学习检测一、选择题1.如图9-1,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=ODC.∠CPO=∠DPO D.OC=PC图9-12.如图9-2,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是()A. B.C.mn D.2mn图9-2二、填空题3.已知:如图9-3,在RtΔABC中,∠C=90°,沿着过点B的一条直线BE折叠ΔABC,使C点恰好落在AB边的中点D处,则∠A的度数等于_____.图9-34.已知:如图9-4,在ΔABC中,BD、CE分别平分∠ABC、∠ACB,且BD、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.图9-4三、解答题5.已知:如图9-5,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.图9-56.已知:如图9-6,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.图9-67.已知:如图9-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△PAB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.图9-78.如图9-8,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.图9-89.已知:如图9-9,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.图9-9拓展、探究、思考10.已知:如图9-10,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.图9-10第十二章轴对称测试1轴对称学习要求1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.一、填空题1.如果一个图形沿着一条直线_____,直线两旁的部分能够_____,那么这个图形叫做_____,这条直线叫做它的_____,这时,我们也就说这个图形关于这条直线(或轴)_____.2.把一个图形沿着某一条直线折叠,如果它能够与_____重合,那么这两图形叫做关于_____,这条直线叫做_____,折后重合的点是_____,又叫做_____.3.成轴对称的两个图形的主要性质是(1)成轴对称的两个图形是_____;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对_____的垂直平分线.4.轴对称图形的对称轴是_____.5.(1)角是轴对称图形,它的对称轴是_____;(2)线段是轴对称图形,它的对称轴是_____;(3)圆是轴对称图形,它的对称轴是_____.二、选择题6.在图1-1中,是轴对称图形的是()图1-17.在图1-2的几何图形中,一定是轴对称图形的有()图1-2A.2个 B.3个 C.4个 D.5个8.如图1-3,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()图1-3A.30° B.50° C.90° D.100°9.将一个正方形纸片依次按图1-4a,b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图1-5图1-4图1-510.如图1-6,将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③);(3)将纸片收展平,那么∠AFE的度数为()图1-6A.60° B.67.5° C.72° D.75°综合、运用、诊断一、解答题11.请分别画出图1-7中各图的对称轴.(1)正方形(2)正三角形(3)相交的两个圆图1-712.如图1-8,ΔABC中,AB=BC,ΔABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BDA'的度数.图1-813.在图1-9中你能否将已知的正方形按如下要求分割成四部分,(1)分割后的图形是轴对称图形;(2)这四个部分图形的形状和大小都相同.请至少给出四种不同分割的设计方案,并画出示意图.图1-914.在图1-10这一组图中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.图1-10拓展、探究、思考15.已知,如图1-11,在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,求∠OED的度数.图1-11测试2线段的垂直平分线学习要求1.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.2.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.课堂学习检测一、填空题1.经过_____并且_____的_____叫做线段的垂直平分线.2.线段的垂直平分线有如下性质:线段的垂直平分线上的_____与这条线段_____的_____相等.3.线段的垂直平分线的判定,由于与一条线段两个端点距离相等的点在_____,并且两点确定_____,所以,如果两点M、N分别与线段AB两个端点的距离相等,那么直线MN是_____.4.完成下列各命题:(1)线段垂直平分线上的点,与这条线段的_____;(2)与一条线段两个端点距离相等的点,在_____;(3)不在线段垂直平分线上的点,与这条线段的_____;(4)与一条线段两个端点距离不相等的点,_____;(5)综上所述,线段的垂直平分线是_____的集合.5.如图2-1,若P是线段AB的垂直平分线上的任意一点,则(1)ΔPAC≌_____;(2)PA=_____;(3)∠APC=_____;(4)∠A=_____.图2-16.ΔABC中,若AB-AC=2cm,BC的垂直平分线交AB于D点,且ΔACD的周长为14cm,则AB=_____,AC_____.7.如图2-2,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=_____;(2)若AB=5cm,BC=3cm,则ΔPBC的周长=_____.图2-2综合、运用、诊断一、解答题8.已知:如图2-3,线段AB.求作:线段AB的垂直平分线MN.作法:图2-39.已知:如图2-4,∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.作法:图2-4拓展、探究、思考10.已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等.如果存在,请作出定点B;若不存在,请说明理由.图2-511.如图2-6,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,那么点E、F是否关于AD对称?若对称,请说明理由.图2-6测试3轴对称变换学习要求1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.一、填空题1.由一个_____得到它的_____叫做轴对称变换.2.如果由一个平面图形得到它关于某一条直线l的对称图形,那么,(1)这个图形与原图形的_____完全一样;(2)新图形上的每一点,都是_____;(3)连接任意一对对应点的线段被_____.3.由于几何图形都可以看成是由点组成的,因此,要作一个平面图形的轴对称图形,可归结为作该图形上的这些点关于对称轴的______.二、解答题4.试分别作出已知图形关于给定直线l的对称图形.(1)图3-1(2)图3-2(3)图3-35.如图3-4所示,已知平行四边形ABCD及对角线BD,求作ΔBCD关于直线BD的对称图形.(不要求写作法)图3-46.如图3-5所示,已知长方形纸片ABCD中,沿着直线EF折叠,求作四边形EFCD关于直线EF的对称图形.(不要求写作法)图3-57.为了美化环境,在一块正方形空地上分别种植不同的花草,现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等,现已有两种不同的分法:①分别作两条对角线(图①),②过一条边的四等分点作该边的垂线段(图②),(图②中的两个图形的分割看作同一种方法).请你按照上述三个要求,分别在图③的三个正方形中,给出另外三种不同的分割方法.(只画图,不写作法)图3-6综合、运用、诊断8.已知:如图3-7,A、B两点在直线l的同侧,点A'与A关于直线l对称,连接A'B交l于P点,若A'B=a.(1)求AP+PB;(2)若点M是直线l上异于P点的任意一点,求证:AM+MB>AP+PB.图3-79.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(1)如图3-8,在l上求作一点M,使得|AM-BM|最小;作法:图3-8(2)如图3-9,在l上求作一点M,使得|AM-BM|最大;作法:图3-9(3)如图3-10,在l上求作一点M,使得AM+BM最小.图3-10拓展、探究、思考10.(1)如图3-11,点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;图3-11(2)如图3-12,已知线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q(点P在点Q的左侧)且PQ=a,四边形APQB的周长最小.图3-1211.(1)已知:如图3-13,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得ΔPMQ的周长最小;图3-13(2)已知:如图3-14,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P到点M的距离与点P到OA边的距离之和最小.图3-14测试4用坐标表示轴对称学习要求1.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.2.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.课堂学习检测一、解答题1.按要求分别写出各对应点的坐标:已知点A(2,4)B(-1,5)C(-3,-7)D(6,-8)E(9,0)F(0,-2)关于y轴的对称点A'()B'()C'()D'()E'()F'()关于x轴的对称点A''()B''()C''()D''()E''()F''()2.已知:线段AB,并且A、B两点的坐标分别为(-2,1)和(2,3).(1)在图4-1中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2,并写出相应端点的坐标.图4-1(2)在图4-2中分别画出线段AB关于直线x=-1和直线y=4的对称线段A3B3及A4B4,并写出相应端点的坐标.图4-23.如图4-3,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D图4-3综合、运用、诊断4.如图4-4,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.图4-4拓展、探究、思考5.如图4-5,在平面直角坐标系中,直线l是第一、三象限的角平分线.图4-5实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C'的位置,并写出它们的坐标:B'_____、C'_____;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为_____(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.测试5等腰三角形的性质学习要求掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.课堂学习检测一、填空题1._____的_____叫做等腰三角形.2.(1)等腰三角形的性质1是______________________________________________.(2)等腰三角形的性质2是______________________________________________.(3)等腰三角形的对称性是_____,它的对称轴是_____.图5-13.如图5-1,根据已知条件,填写由此得出的结论和理由.(1)∵ΔABC中,AB=AC,∴∠B=______.()(2)∵ΔABC中,AB=AC,∠1=∠2,∴AD垂直平分______.()(3)∵ΔABC中,AB=AC,AD⊥BC,∴BD=______.()(4)∵ΔABC中,AB=AC,BD=DC,∴AD⊥______.()4.等腰三角形中,若底角是65°,则顶角的度数是_____.5.等腰三角形的周长为10cm,一边长为3cm,则其他两边长分别为_____.6.等腰三角形一个角为70°,则其他两个角分别是_____.7.等腰三角形一腰上的高与另一腰的夹角是20°,则等腰三角形的底角等于_____.二、选择题8.等腰直角三角形的底边长为5cm,则它的面积是()A.25cm2 B.12.5cm2C.10cm2 D.6.25cm29.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cmC.63cm和51cm D.以上都不正确10.△ABC中,AB=AC,D是AC上一点,且AD=BD=BC,则∠A等于()A.45° B.36° C.90° D.135°综合、运用、诊断一、解答题11.已知:如图5-2,ΔABC中,AB=AC,D、E在BC边上,且AD=AE.求证:BD=CE.图5-212.已知:如图5-3,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.图5-313.已知:如图5-4,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.图5-4拓展、探究、思考14.已知:如图5-5,RtΔABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)ΔDEF为等腰直角三角形.图5-515.在平面直角坐标系中,点P(2,3),Q(3,2),请在x轴和y轴上分别找到M点和N点,使四边形PQMN周长最小.(1)作出M点和N点.(2)求出M点和N点的坐标.图5-6测试6等腰三角形的判定学习要求掌握等腰三角形的判定定理.课堂学习检测一、填空题1.等腰三角形的判定定理是_________________________________________________.2.ΔABC中,∠B=50°,∠A=80°,AB=5cm,则AC=______.3.如图6-1,AE∥BC,∠1=∠2,若AB=4cm,则AC=____________.4.如图6-2,∠A=∠B,∠C+∠CDE=180°,若DE=2cm,则AD=____________.图6-1图6-2图6-3图6-45.如图6-3,四边形ABCD中,AB=AD,∠B=∠D,若CD=1.8cm,则BC=______.6.如图6-4,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______.7.ΔABC中,CD平分∠ACB,DE∥BC交AC于E,DE=7cm,AE=5cm,则AC=______.8.ΔABC中,AB=AC,BD是角平分线,若∠A=36°,则图中有______个等腰三角形.9.判断下列命题的真假:(1)有两个内角分别是70°、40°的三角形是等腰三角形.()(2)平行于等腰三角形一边的直线所截得的三角形仍是等腰三角形.()(3)有两个内角不等的三角形不是等腰三角形.()(4)如果一个三角形有不在同一顶点处的两个外角相等,那么这个三角形是等腰三角形.()综合、运用、诊断一、解答题10.已知:如图6-5,ΔABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.图6-511.已知:如图6-6,ΔABC中,AB=AC,E在CA的延长线上,ED⊥BC.求证:AE=AF.图6-612.已知:如图6-7,ΔABC中,∠ACB=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.求证:CE=CF.图6-713.如图6-8,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.图6-8拓展、探究、思考14.如图6-9,若A、B是平面上的定点,在平面上找一点C,使ΔABC构成等腰直角三角形,问这样的C点有几个?并在图6-9中画出C点的位置.图6-915.如图6-10,对于顶角∠A为36°的等腰ΔABC,请设计出三种不同的分法,将ΔABC分割为三个三角形,并且使每个三角形都是等腰三角形.图6-10测试7等腰三角形的判定与性质学习要求熟练运用等腰三角形的判定定理与性质定理进行推理和计算.课堂学习检测一、填空题1.如果一个三角形的两条高线相等(如图7-1),那么这个三角形一定是______.图7-12.如图7-2,在ΔABC中,高AD、BE交于H点,若BH=AC,则∠ABC=______.图7-23.如图7-3,ΔABC中,AB=AC,AD=BD,AC=CD,则∠BAC=______.图7-34.如图7-4,在ΔABC中,∠ABC=120°,点D、E分别在AC和AB上,且AE=ED=DB=BC,则∠A的度数为______°.图7-45.如图7-5,ΔABC是等腰直角三角形,BD平分∠ABC,DE⊥BC于点E,且BC=10cm,则△DCE的周长为______cm.图7-5二、选择题6.△ABC中三边为a、b、c,满足关系式(a-b)(b-c)(c-a)=______图7-50,则这个三角形一定为()A.等边三角形 B.等腰三角形C.等腰钝角三角形 D.等腰直角三角形7.若一个三角形是轴对称图形,则这个三角形一定是()A.等边三角形 B.不等边三角形C.等腰三角形 D.等腰直角三角形8.如图7-6,ΔABC中,AB=AC,∠BAC=108°,若AD、AE三等分∠BAC,则图中等腰三角形有()A.4个 B.5个 C.6个 D.7个图7-6图7-79.等腰三角形两边a、b满足|a-b+2|+(2a+3b-11)2=0A.7 B.5 C.8 D.7或10.如图7-7,ΔABC中,AB=AC,BE=CD,BD=CF,则∠EDF=()A.2∠A B.90°-2∠AC.90°-∠A D.三、解答题11.已知:如图7-8,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F.求证:EF平分∠AEB.图7-812.已知:如图7-9,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角(∠ACD)的平分线于G,探究线段EF与FG的数量关系并证明你的结论.图7-913.如图7-10,过线段AB的两个端点作射线AM,BN,使AM∥BN,请按以下步骤画图并回答.(1)画∠MAB、∠NBA的平分线交于点E,∠AEB是什么角?(2)过点E任作一线段交AM于点D,交BN于点C.观察线段DE、CE,有什么发现?请证明你的猜想.(3)试猜想AD,BC与AB有什么数量关系?图7-1014.已知:如图7-11,ΔABC中,AB=AC,∠A=100°,BE平分∠B交AC于E.(1)求证:BC=AE+BE;(2)探究:若∠A=108°,那么BC等于哪两条线段长的和呢?试证明之.图7-11测试8等边三角形学习要求掌握等边三角形的性质和判定.课堂学习检测一、填空题1._____的_____叫做等边三角形.2.等边三角形除一般的等腰三角形的性质外,它的特有性质主要有:(1)边的性质:_____;(2)角的性质:_____;(3)对称性:等边三角形是_____图形,它有_____对称轴.3.等边三角形的判定方法:(1)三条边_____的_____是等边三角形;(2)三个角_____的_____是等边三角形;(3)_____的等腰三角形是等边三角形.4.含30°角的直角三角形的一个主要性质是______.5.判断下列命题的真假:①有一个外角是120°的等腰三角形是等边三角形.()②有两个外角相等的等腰三角形是等边三角形.()③有一边上的高也是这边上的中线的等腰三角形是等边三角形.()④三个外角都相等的三角形是等边三角形.()6.已知:如图8-1,ΔABC是等边三角形,AE⊥BC于E,AD⊥CD于D,若AB∥CD,则图中60°的角有_____个.图8-17.如图8-2,B、C、D在一直线上,ΔABC、ΔADE是等边三角形,若CE=15cm,CD=6cm,则AC=_____,∠ECD=_____.图8-28.如图8-3,已知ΔABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC=_____cm.图8-3综合、运用、诊断解答题9.已知:如图8-4,ΔABC和ΔBDE都是等边三角形.(1)求证:AD=CE;(2)当AC⊥CE时,判断并证明AB与BE的数量关系.图8-410.如图8-5,已知ΔABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)求证:AF=BD.图8-511.已知:如图8-6,四边形ABCD中,AC平分∠BAD,CD∥AB,BC=6cm,∠BAD=30°,∠B=90°.求CD的长______.图8-6拓展、探究、思考12.(1)如图8-7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC,求∠AEB的大小;图8-7(2)如图8-8,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.图8-813.已知:如图8-9,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE.求证:CE=DE.图8-914.已知:如图8-10,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=4.(1)在AB边上求作点P,使PC+PD最小;图8-10(2)求出(1)中PC+PD的最小值.第十三章实数测试1平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a,即______,那么这个______叫做a的算术平方根.a的算术平方根记为______,a叫做______.规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a的平方根.这就是说,如果______,那么x叫做a的平方根,a的平方根记为______.3.求一个数a的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______.5.25的算术平方根是______;______是9的平方根;的平方根是______.6.计算:(1)______;(2)______;(3)______;(4)______;(5)______;(6)______.二、选择题7.下列各数中没有平方根的是()A.(-3)2 B.0C. D.-638.下列说法正确的是()A.169的平方根是13 B.1.69的平方根是±1.3C.(-13)2的平方根是-13 D.-(-13)没有平方根三、解答题9.求下列等式中的x:(1)若x2=1.21,则x=______;(2)x2=169,则x=______;(3)若,则x=______;(4)若x2=(-2)2,则x=______.10.要切一块面积为16cm2的正方形钢板,它的边长是多少?综合、运用、诊断一、填空题11.的平方根是______;0.0001算术平方根是______:0的平方根是______.12.的算术平方根是______:的算术平方根的相反数是______.13.一个数的平方根是±2,则这个数的平方是______.14.表示3的______;表示3的______.15.如果-x2有平方根,那么x的值为______.16.如果一个数的负平方根是-2,则这个数的算术平方根是______,这个数的平方是_____.17.若有意义,则a满足______;若有意义,则a满足______.18.若3x2-27=0,则x=______.二、判断正误19.3是9的算术平方根.()20.3是9的一个平方根.()21.9的平方根是-3.()22.(-4)2没有平方根.()23.-42的平方根是2和-2.()三、选择题24.下列语句不正确的是()A.0的平方根是0 B.正数的两个平方根互为相反数C.-22的平方根是±2 D.a是a2的一个平方根25.一个数的算术平方根是a,则比这个数大8数是()A.a+8 B.a-4 C.a2-8 D.a2+四、解答题26.求下列各式的值:(1)3(2)(3)(4)27.要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?拓展、探究、思考28.x为何值时,下列各式有意义?29.已知a≥0,那么等于什么?30.(1)52的平方根是________;(2)(-5)2的平方根是________,算术平方根是________;(3)x2的平方根是________,算术平方根是________;(4)(x+2)2的平方根是________,算术平方根是________.31.思考题:估计与最接近的整数.测试2立方根学习要求了解立方根的含义;会表示、计算一个数的立方根.课堂学习检测一、填空题1.一般的,如果______,那么这个数叫做a的立方根或三次方根。这就是说,如果______,那么x叫做a的立方根,a的立方根记为________.2.求一个数a的______的运算,叫做开立方.3.正数的立方根是______数;负数的立方根是______数;0的立方根是______.4.一般的,______.5.125的立方根是______;的立方根是______.6.计算:(1)______;(2)______;(3)______.7.体积是64m3的立方体,它的棱长是______m8.的立方根是______;的平方根是______.9.______;______;______;______;______;______;______.10.(-1)2的立方根是______;一个数的立方根是,则这个数是______.二、选择题11.下列结论正确的是()A.的立方根是 B.没有立方根C.有理数一定有立方根 D.(-1)6的立方根是-112.下列结论正确的是()A.64的立方根是±4 B.是的立方根C.立方根等于本身的数只有0和1 D.三、解答题13.比较大小:(1)(2)(3)14.求出下列各式中的a:(1)若a3=0.343,则a=______;(2)若a3-3=213,则a=______;(3)若a3+125=0,则a=______;(4)若(a-1)3=8,则a=______.15.若是2x-8的立方根,则x的取值范围是______.综合、运用、诊断一、填空题16.若x的立方根是4,则x的平方根是______.17.中的x的取值范围是______,中的x的取值范围是______.18.-27的立方根与的平方根的和是______.19.若则x与y的关系是______.20.如果那么(a-67)3的值是______.21.若则x=______.22.若m<0,则______.二、判断正误23.负数没有平方根,但负数有立方根.()24.的平方根是的立方根是()25.如果x2=(-2)3,那么x=-2.()26.算术平方根等于立方根的数只有1.()三、选择题27.下列说法正确的是()A.一个数的立方根有两个 B.一个非零数与它的立方根同号C.若一个数有立方根,则它就有平方根 D.一个数的立方根是非负数28.如果-b是a的立方根,则下列结论正确的是()A.-b3=a B.-b=a3 C.b=a3 D.b3=四、解答题29.求下列各式的值:(1)(2)(3)(4)(5)30.已知5x+19的立方根是4,求2x+7的平方根.拓展、探究、思考31.已知实数a,满足求|a-1|+|a+1|的值.32.估计与60的立方根最接近的整数.测试3实数(一)学习要求了解无理数和实数的意义;了解有理数的概念、运算在实数范围内仍适用课堂学习检测一、填空题1.______叫无理数,______统称实数.2.______与数轴上的点一一对应.3.把下列各数填入相应的集合:-1、、π、-3.14、、、、.(1)有理数集合{};(2)无理数集合{};(3)正实数集合{};(4)负实数集合{}.4.的相反数是________;的倒数是________;的绝对值是________.5.如果一个数的平方是64,那么它的倒数是________.6.比较大小:(1)(2)二、判断正误7.实数是由正实数和负实数组成.()8.0属于正实数.()9.数轴上的点和实数是一一对应的.()10.如果一个数的立方等于它本身,那么这个数是0或1.()11.若则()三、选择题12.下列说法错误的是()A.实数都可以表示在数轴上 B.数轴上的点不全是有理数C.坐标系中的点的坐标都是实数对 D.是近似值,无法在数轴上表示准确13.下列说法正确的是()A.无理数都是无限不循环小数 B.无限小数都是无理数C.有理数都是有限小数 D.带根号的数都是无理数14.如果一个数的立方根等于它本身,那么这个数是()A.±1 B.0和1 C.0和-1 D.0和±四、计算题15.16.五、解答题17.天安门广场的面积大约是440000m2,若将其近似看作一个正方形,那么它的边长大约是多少?(用计算器计算,精确到m综合、运用、诊断一、填空题18.的平方根是______;-12的立方根是______.19.若则x=______.20.|3.14-π|=______;______.21.若则x=______;若则x=______.22.当a______时,|a-2|=a-2.23.若实数a、b互为相反数,c、d互为负倒数,则式子=______.24.在数轴上与1距离是的点,表示的实数为______.二、选择题25.估计的大小应在()A.7~8之间 B.8.0~8.5之间C.8.5~9.0之间 D.9~10之间26.-27的立方根与的算术平方根的和是()A.0 B.6C.6或-12 D.0或627.实数和的大小关系是()A. B.C. D.28.一个正方体水晶砖,体积为100cm3,它的棱长大约在()A.4~5cm之间 B.5~6cm之间C.6~7cm之间 D.7~8cm之间29.如图,在数轴上表示实数的点可能是()A.P点 B.Q点 C.M点 D.N点三、解答题30.写出符合条件的数.(1)小于的所有正整数;(2)绝对值小于的所有整数.31.一个底为正方形的水池的容积是486m3,池深拓展、探究、思考32.已知M是满足不等式的所有整数a的和,N是满足不等式的最大整数.求M+N的平方根.测试4实数(二)学习要求巩固实数的相关概念和运算.课堂学习检测一、填空题1.的相反数是____________;的绝对值是______.2.大于的所有负整数是______.3.一个数的绝对值和算术平方根都等于它本身,那么这个数是______.二、选择题4.下列说法正确的是()A.正实数和负实数统称实数B.正数、零和负数统称为有理数C.带根号的数和分数统称实数D.无理数和有理数统称为实数5.下列计算错误的是()A. B. C. D.三、用计算器计算(结果保留三位有效数字)6. 7.8. 9.四、计算题10. 11.12.13.已知求x+y的值.14.已知是n-m+3的算术平方根,是m+2n的立方根,求B-A的平方根.综合、运用、诊断一、填空题15.如果|a|=-a,那么实数a的取值范围是______.16.已知|a|=3,且ab>0,则a-b的值为______.17.已知b<a<c,化简|a-b|+|b-c|+|c-a|=______.二、选择题18.下列说法正确的是()A.数轴上任一点表示唯一的有理数B.数轴上任一点表示唯一的无理数C.两个无理数之和一定是无理数D.数轴上任意两点之间都有无数个点19.已知a、b是实数,下列命题结论正确的是()A.若a>b,则a2>b2 B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2 D.若a3>b3,则a2>b2拓展、探究、思考20.若无理数a满足不等式1<a<4,请写出两个符合条件的无理数______.21.已知a是的整数部分,b是它的小数部分,求(-a)3+(b+3)2的值.第十四章一次函数测试1变量与函数学习要求1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围)2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值.3.对函数关系的表示法(如解析法、列表法、图象法)有初步认识.课堂学习检测一、填空题1.设在某个变化过程中有两个变量x和y,如果对于变量x取值范围内的______,另一个变量y都有______的值与它对应,那么就说______是自变量,______是的函数.2.设y是x的函数,如果当x=a时,y=b,那么b叫做当自变量的值为______时的______.3.对于一个函数,在确定自变量的取值范围时,不仅要考虑______有意义,而且还要注意问题的______.4.飞轮每分钟转60转,用解析式表示转数n和时间t(分)之间的函数关系式:(1)以时间t为自变量的函数关系式是______.(2)以转数n为自变量的函数关系式是______.5.某商店进一批货,每件5元,售出时,每件加利润0.8元,如售出x件,应收货款y元,那么y与x的函数关系式是______,自变量x的取值范围是______.6.已知5x+2y-7=0,用含x的代数式表示y为______;用含y的代数式表示x为______.7.已知函数y=2x2-1,当x1=-3时,相对应的函数值y1=______;当时,相对应的函数值y2=______;当x3=m时,相对应的函数值y3=______.反过来,当y=7时,自变量x=______.8.已知根据表中自变量x的值,写出相对应的函数值.x…-4-3-2-101234…y二、求出下列函数中自变量x的取值范围9. 10. 11.12. 13. 14.15. 16. 17.综合、运用、诊断一、选择题18.在下列等式中,y是x的函数的有()3x-2y=0,x2-y2=1,A.1个 B.2个 C.3个 D.4个19.设一个长方体的高为10cm,底面的宽为xcm,长是宽的2倍,这个长方体的体积V(cm3)与长、宽的关系式为V=20x2,在这个式子里,自变量是()A.20x2 B.20x C.V D.x是()A.y=28x+0.20 B.y=0.20x+28xC.y=0.20x+28 D.y=28-0.20x二、解答题21.已知:等腰三角形的周长为50cm,若设底边长为xcm,腰长为ycm,求y与x的函数解析式及自变量x的取值范围.22.某人购进一批苹果到集市上零售,已知卖出的苹果x(千克)与销售的金额y元的关系如下表:x(千克)12345…y(元)2+0.14+0.26+0.38+0.410+0.5…(1)写出y与x的函数关系式:______;(2)该商贩要想使销售的金额达到250元,至少需要卖出多少千克的苹果?拓展、探究、思考23.用40m长的绳子围成矩形ABCD,设AB=xm,矩形ABCD的面积为Sm2,(1)求S与x的函数解析式及x的取值范围;(2)写出下面表中与x相对应的S的值:x…899.51010.51112…S…(3)猜一猜,当x为何值时,S的值最大?(4)想一想,如果打算用这根绳子围成的面积比(3)中的还大,应围成么样的图形?并算出相应的面积.测试2函数的图象学习要求初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,能初步学会依据函数的图象分析(或回答)该函数的某些性质(即“看图识性”).课堂学习检测一、解答题1.回答问题.(1)什么是函数的图象?(2)为什么要学习函数的图象?(3)用“描点法”画一个函数的图象的一般步骤是什么?2.用“描点法”分别画出下列各函数的图象.(1)x…-6-4-2024…y解:函数的自变量x的取值范围是______.(2)解:函数的自变量x的取值范围是______.x…-6-4-2024…y问题:当(2)中的自变量x的取值范围变为-2≤x<4时,请在上图中标出相应的图象部分.(3)y=x2解:函数y=x2的自变量x的取值范围是____.x…-101…y…从图象可以得到,函数图象的最低点的坐标是______;此图象关于______对称.3.如图2-1,下面的图象记录了某地一月份某大的温度随时间变化的情况,请你仔细观察图象回答下面的问题:图2-1(1)在这个问题中,变量分别是______,时间的取值范围是______;(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3(3)你从图象中还能获得哪些信息?(写出1~2条即可)答:__________________________________________________.综合、运用、诊断一、选择题4.图2-2中,表示y是x的函数图象是()图2-25.如图2-3是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()图2-3A.39.0℃ B.38.2℃6.如图2-4,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高图2-4二、填空题7.星期日晚饭后,小红从家里出去散步,图2-5所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题图2-5(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;(2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;(4)小红从邮亭走回家用了______分,平均速度是______米/秒.三、解答题8.已知:线段AB=36米,一机器人从A点出发,沿线段AB走向B(1)求所走的时间t(秒)与其速度V(米/秒)的函数解析式及自变量V的取值范围;(2)利用描点法画出此函数的图象.拓展、探究、思考9.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图2-6中的函数图象特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?图2-6序号函数图象特征函数变化规律(1)曲线从点A(-6,-4)至点K(7,2)自变量的取值范围是______.(2)曲线与y轴交于点D(0,4)当x=______时,y=______.(3)曲线与x轴分别交于点B(-5,0)、F(2,0)、H(6,0)当x的值分别为时______,y=0.(4)曲线经过点E(1,2)当x=______时,y=______.(5)由左至右曲线AC呈上升状态当-6≤x≤-2时,y随x的增大而______.(6)由左至右曲线CG呈下降状态当______时,y随x的增大而___________.(7)由左至右曲线GK呈____________当______时y随____________.(8)曲线上的最高点是C(-2,5)当x=______时,y有______值,且这个值为____________.(9)曲线上的最低点是____________当x=______时,y有______值,且这个值为____________.(10)曲线BCF位于x轴的上方当______时,y______0.测试3正比例函数学习要求理解正比例函数的概念,能正确画出正比例函数y=k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安医学院《心电图学》2023-2024学年第二学期期末试卷
- 新乡工程学院《交直流调速控制系统》2023-2024学年第二学期期末试卷
- 云南省怒江市2025届数学高二下期末监测试题含解析
- 武汉工程科技学院《在审计中的应用》2023-2024学年第二学期期末试卷
- 上海纽约大学《建筑环境与设备技术》2023-2024学年第二学期期末试卷
- 天津师范大学津沽学院《机械学基础》2023-2024学年第二学期期末试卷
- 新疆阿克苏市沙雅县第二中学2024-2025学年高二下数学期末质量跟踪监视模拟试题含解析
- 郑州轻工业大学《国际公法双语》2023-2024学年第二学期期末试卷
- 郑州幼儿师范高等专科学校《办公软件高级应用技术实践》2023-2024学年第二学期期末试卷
- 无锡工艺职业技术学院《CellBiology》2023-2024学年第二学期期末试卷
- 2024年江苏省镇江市润州区中考第二次中考生物模拟试卷
- 《扬州慢》教学课件
- 国宝大熊猫的资料介绍三年级8篇
- 2024年贵州省贵阳市南明区中考一模考试物理试题
- 电子产品出厂检验报告
- 《施工现场消防》课件
- 某地区地质灾害-崩塌勘查报告
- 2024年新高考适应性考试俄语试题含答案
- 非法营运培训课件
- 《海拉EPS传感器》课件
- 子宫颈癌护理查房课件
评论
0/150
提交评论