2024年人教版(2024)高一数学上册阶段测试试卷_第1页
2024年人教版(2024)高一数学上册阶段测试试卷_第2页
2024年人教版(2024)高一数学上册阶段测试试卷_第3页
2024年人教版(2024)高一数学上册阶段测试试卷_第4页
2024年人教版(2024)高一数学上册阶段测试试卷_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年人教版(2024)高一数学上册阶段测试试卷336考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、【题文】已知奇函数f(x)和偶函数g(x)分别满足若存在实数a,使得成立,则实数b的取值范围是A.(-1,1)B.C.D.2、【题文】若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数与函数即为“同族函数”,请你找出下面哪个函数解析式也能够被用来构造“同族函数”的是()A.B.C.D.3、已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为()A.6πcmB.60cmC.(40+6π)cmD.1080cm4、已知两条直线l1:x+2ay-1=0,l2:x-4y=0,且l1⊥l2,则满足条件a的值为()A.-B.C.D.25、已知an=n鈭�2017n鈭�2016(n隆脢N*)

则在数列{an}

的前100

项中最小项和最大项分别是(

)

A.a1a100

B.a100a44

C.a45a44

D.a44a45

评卷人得分二、填空题(共5题,共10分)6、如图,将锐角A为60°,边长为a的菱形ABCD沿BD折成二面角,使A与C之间的距离为则二面角A-BD-C的平面角的大小为____.

7、满足且x∈[0,2π)的x的集合为____.8、【题文】关于x的方程有三个不同的实数解,则a的取值范围是____.9、【题文】已知y="f(x)"在定义域(-1,1)上是减函数,且f(1-a)的取值范围。

是____;10、已知点是角α终边上一点且则y=______.评卷人得分三、证明题(共8题,共16分)11、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面积S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.12、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.13、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.14、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.15、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.16、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.17、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.18、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共3题,共12分)19、作出下列函数图象:y=20、画出计算1++++的程序框图.21、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.

评卷人得分五、解答题(共3题,共24分)22、、已知求的值.23、【题文】如图,在直三棱柱中-ABC中,ABAC,AB=AC=2,=4;点D是BC的中点.

(1)求异面直线与所成角的余弦值;

(2)求平面与所成二面角的正弦值.

24、设集合A={x|2m-1<x<m};集合B={x|-4≤x≤5}.

(Ⅰ)若m=-3;求A∪B;

(Ⅱ)若A∩B=∅,求实数m的取值范围.评卷人得分六、综合题(共2题,共4分)25、(1)如图;在等腰梯形ABCD中,AD∥BC,M是AD的中点;

求证:MB=MC.

(2)如图;在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).

①画出△OAB向下平移3个单位后的△O1A1B1;

②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).26、已知直线l1:x-y+2=0;l2:x+y-4=0,两条直线的交点为A,点B在l1上,点C在l2上,且,当B,C变化时,求过A,B,C三点的动圆形成的区域的面积大小为____.参考答案一、选择题(共5题,共10分)1、C【分析】【解析】

试题分析:由f(x)的解析式知,当0≤<1时,f(x)=是增函数,其值域为[0,1],当≥1时,f(x)=是减函数,值域为(0,1],故当≥0时,值域为[0,1],因为f(x)是奇函数,根据奇函数的对称性知,当≤0时;值域为[-1,0],所以f(x)的最小值为-1;

由存在实数a,使得成立知,>=-1;①

当≥0时,解得

因为g(x)是偶函数,由偶函数的对称性知,当b≤0时,不等式的解为

所以实数b的取值范围是故选C.

考点:函数奇偶性,指数函数与幂函数图像性质,含参数不等式成立问题【解析】【答案】C,2、B【分析】【解析】略【解析】【答案】B3、C【分析】解:∵一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的弧长l=α•r=π•20=6π(cm);

则扇形的周长为l+2r=6π+2×20=(6π+40)cm;

故选:C.

由条件利用扇形的弧长公式,求得扇形的弧长l的值,可得扇形的周长为l+2r的值.

本题主要考查角度与弧度的互化,弧长公式的应用,属于基础题.【解析】【答案】C4、C【分析】解:由题意得:1-8a=0,解得a=

故选:C.

当两条直线垂直时,A1A2+B1B2=0;解方程求出a的值.

本题考查两直线垂直的条件,体现了转化的数学思想.属于基础题.【解析】【答案】C5、C【分析】解:an=n鈭�2017n鈭�2016=n鈭�2016+2016鈭�2017n鈭�2016=1+2016鈭�2017n鈭�2016(n隆脢N*)

n鈮�44

时,数列{an}

单调递增,且an>0n鈮�45

时,数列{an}

单调递增,且an<1

隆脿

在数列{an}

的前100

项中最小项和最大项分别是a45a44

故选:C

an=n鈭�2017n鈭�2016=n鈭�2016+2016鈭�2017n鈭�2016=1+2016鈭�2017n鈭�2016(n隆脢N*)

利用其单调性即可得出.

本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.【解析】C

二、填空题(共5题,共10分)6、略

【分析】

由题意;取BD的中点E,连接AE,CE,则AE⊥BD,CE⊥BD

∴∠AEC是二面角A-BD-C的平面角。

∵菱形ABCD中;锐角A为60°,边长为a;

∴AE=CE=

∵A与C之间的距离为

∴△AEC是等边三角形。

∴∠AEC=60°

∴二面角A-BD-C的平面角的大小为60°

故答案为:60°

【解析】【答案】取BD的中点E;连接AE,CE,则AE⊥BD,CE⊥BD,故∠AEC是二面角A-BD-C的平面角,判定△AEC是等边三角形,即可得到结论.

7、略

【分析】

因为

所以x∈[-+2kπ,];

又因为x∈[0;2π);

所以x的集合为[0,].

故答案为[0,].

【解析】【答案】根据余弦函数的图象可得不等式的解集为∈[-+2kπ,];结合函数的定义域即可得到答案.

8、略

【分析】【解析】

试题分析:,因为关于x的方程有三个不同的实数解,所以有三个不同的实数解,令则令则所以

考点:三次函数的零点问题.【解析】【答案】(—4,0).9、略

【分析】【解析】略【解析】【答案】10、略

【分析】解:∵点是角α终边上一点且=则y=

故答案为:.

由条件利用任意角的三角函数的定义;求得y的值.

本题主要考查任意角的三角函数的定义,属于基础题.【解析】三、证明题(共8题,共16分)11、略

【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;

(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;

则CE=AC•sin(α+β)=bsin(α+β);

∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根据题意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB•ACsin(α+β)=BD•AD+CD•AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.12、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.13、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.14、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.15、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.16、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=17、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.18、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、作图题(共3题,共12分)19、【解答】幂函数y={#mathml#}x32

{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;

【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.20、解:程序框图如下:

【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.21、解:程序框图如下:

【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.五、解答题(共3题,共24分)22、略

【分析】

.(4分)...(8分).(12分)【解析】略【解析】【答案】23、略

【分析】【解析】

试题分析:(1)以为单位正交基底建立空间直角坐标系利用向量法能求出异面直线与所成角的余弦值;(2)分别求出平面的法向量与的法向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论