版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年华师大新版高一数学下册月考试卷381考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、函数的最小正周期是()A.B.C.D.2、已知之间的一组数据如右表:。01238264则线性回归方程所表示的直线必经过点()A.(0,0)B.(1.5,5)C.(4,1.5)D.(2,2)3、【题文】已知集合A=B=则有()A.B.C.D.4、函数的零点所在的区间为()A.B.C.D.5、函数y=f(x)是R上的偶函数,且在(﹣∞,0]上是增函数,若f(a)≤f(2),则实数a的取值范围是()A.a≤2B.a≥﹣2C.a≤﹣2或a≥2D.﹣2≤a≤2评卷人得分二、填空题(共7题,共14分)6、721度是第____象限角.7、对于坐标平面内的任意两点P1(x1,y1),P2(x2,y2),定义运算“⊗”为:P1⊗P2=(x1,y1)⊗(x2,y2)=(x1x2-y1y2,x1y2+x2y1)若点M(x,y)(-2≤x≤-1),点N的坐标为(x,y)⊗(1,1),则点N到直线x+y+2=0距离的最大值为____.8、在ABC中,若则____9、过点且被圆截得的弦长为8的直线方程为.10、【题文】已知直线l:y=3x+3,那么直线x-y-2=0关于直线l对称的直线方程为____________.11、直线xcosα+y+2=0的倾斜角范围为______.12、已知sin(娄脨6+娄脕)=23
则cos(娄脨3鈭�娄脕)=
______.评卷人得分三、作图题(共9题,共18分)13、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.14、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.15、作出下列函数图象:y=16、作出函数y=的图象.17、画出计算1++++的程序框图.18、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.
19、某潜艇为躲避反潜飞机的侦查,紧急下潜50m后,又以15km/h的速度,沿北偏东45°前行5min,又以10km/h的速度,沿北偏东60°前行8min,最后摆脱了反潜飞机的侦查.试画出潜艇整个过程的位移示意图.20、绘制以下算法对应的程序框图:
第一步;输入变量x;
第二步,根据函数f(x)=
对变量y赋值;使y=f(x);
第三步,输出变量y的值.21、已知简单组合体如图;试画出它的三视图(尺寸不做严格要求)
评卷人得分四、计算题(共3题,共15分)22、规定两数a、b通过”*”运算得到4ab,即a*b=4ab.例如,2*6=4×2×6=48.若不论x是什么数时,总有a*x=x,则a=____.23、若x2-6x+1=0,则=____.24、如图,已知AC=AD=AE=BD=DE,∠ADB=42°,∠BDC=28°,则∠BEC=____.评卷人得分五、证明题(共4题,共8分)25、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.26、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.27、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.28、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.评卷人得分六、综合题(共1题,共3分)29、已知△ABC的一边AC为关于x的一元二次方程x2+mx+4=0的两个正整数根之一,且另两边长为BC=4,AB=6,求cosA.参考答案一、选择题(共5题,共10分)1、D【分析】【解析】试题分析:最小正周期与x的系数有关考点:三角函数最小正周期【解析】【答案】D2、B【分析】【解析】试题分析:根据题意可知那么可知线性回归方程所表示的直线必经过点样本的中心点那么可知结论为B考点:回归直线的性质【解析】【答案】B3、A【分析】【解析】因为集合A=B=那么可知选A【解析】【答案】A4、B【分析】【解答】函数在上是连续函数,且所以此函数在内存在零点。故B正确。5、C【分析】【解答】解:∵函数y=f(x)是R上的偶函数;且在(﹣∞,0]上是增函数;
∴函数y=f(x)在[0;+∞上是减函数;
由偶函数将f(a)≤f(2)等价于f(|a|)≤f(2);
∴|a|≥2;解得a≤﹣2或a≥2;
故选:C.
【分析】由偶函数在关于原点对称的区间上单调性相反,以及偶函数的定义,将不等式进行等价转化,再求出实数a的取值范围.二、填空题(共7题,共14分)6、略
【分析】
721°=2×360°+1°;
所以721°是第一象限的角.
故答案为:一.
【解析】【答案】直接利用象限角的求法化简;即可求出所在象限.
7、略
【分析】
因为坐标平面内的任意两点P1(x1,y1),P2(x2,y2),定义运算“⊗”为:P1⊗P2=(x1,y1)⊗(x2,y2)
=(x1x2-y1y2,x1y2+x2y1);
所以N的坐标为(x;y)⊗(1,1)=(x-y,x+y);
点N到直线x+y+2=0距离为:==|x+1|(-2≤x≤-1);
所以点N到直线x+y+2=0距离的最大值为:.
故答案为:.
【解析】【答案】利用新定义求出N的坐标;然后利用点到直线的距离公式,求出距离表达式,然后求出最大值.
8、略
【分析】【解析】试题分析:根据题意,由于ABC中,若故可知答案为考点:正弦定理【解析】【答案】9、略
【分析】【解析】
圆心(0,0),r=5圆心到弦的距离的平方52-()2=9若直线斜率不存在,则垂直x轴x=3,圆心到直线距离=|0-3|=3,成立若斜率存在y-6=k(x-3)即:kx-y-3k+6=0则圆心到直线距离|0-0-3k+6|=3解得k=综上:x-3=0和3x-4y+15=0故答案为:x-3=0和3x-4y+15=0【解析】【答案】和10、略
【分析】【解析】由得交点坐标P又直线x-y-2=0上的点Q(2,0)关于直线l的对称点为Q′故所求直线(即PQ′)的方程为即7x+y+22=0.【解析】【答案】7x+y+22=011、略
【分析】解:由于直线xcosα+y+2=0的斜率为-由于-1≤cosα≤1;
∴-≤-≤.
设此直线的倾斜角为θ,则0≤θ<π,故-≤tanθ≤.
∴θ∈.
故答案为:.
由于直线xcosα+y+2=0的斜率为-设此直线的倾斜角为θ,则0≤θ<π,且-≤tanθ≤
由此求出θ的围.
本题主要考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,属于基础题.【解析】12、略
【分析】解:隆脽cos(娄脨3鈭�娄脕)=sin[娄脨2鈭�(娄脨3鈭�娄脕)]=sin(娄脨6+娄脕)=23
故答案为23
.
利用诱导公式把要求的式子化为sin[娄脨2鈭�(娄脨3鈭�娄脕)]=sin(娄脨6+娄脕)
再利用已知条件求得结果.
本题主要考查利用诱导公式进行化简求值,属于基础题.【解析】23
三、作图题(共9题,共18分)13、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.14、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.15、【解答】幂函数y={#mathml#}x32
{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;
【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.16、【解答】图象如图所示。
【分析】【分析】描点画图即可17、解:程序框图如下:
【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.18、解:程序框图如下:
【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.19、解:由题意作示意图如下;
【分析】【分析】由题意作示意图。20、解:程序框图如下:
【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.21、
解:几何体的三视图为:
【分析】【分析】利用三视图的作法,画出三视图即可.四、计算题(共3题,共15分)22、略
【分析】【分析】根据a*b=4ab得到4ax=x,求出方程的解即可.【解析】【解答】解:∵a*x=x;
∴4ax=x;
当x≠0时;
∴a=.
故答案为:.23、略
【分析】【分析】两边都除以x求出x+,两边平方后能求出x2+的值,代入求出即可.【解析】【解答】解:∵x2-6x+1=0;
∴x-6+=0;
∴x+=6;
两边平方得:x2+2•x•+=36;
∴x2+=36-2=34;
∴x2+-1=34-1=33.
故答案为:33.24、略
【分析】【分析】根据等腰三角形的性质和等边三角形的性质分别得出∠AEC,∠BED,∠AED的度数,由∠BEC=∠AEC+∠BED-∠AED即可求解.【解析】【解答】解:∠ADC=42°+28°=70°.∠CAD=180°-2×70°=40°;
∠DAE=∠ADE=∠AED=∠60°;
于是;在△ACE中,∠CAE=60°+40°=100°;
∠AEC=(180°-100°)÷2=40°.
又∵在△BDE中;∠BDE=60°+42°=102°;
∴∠BED=(180-102)÷2=39°
从而∠BEC=∠AEC+∠BED-∠AED=40°+39°-60°=19°.
故答案为19°.五、证明题(共4题,共8分)25、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.26、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.27、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.28、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年钢材行业技术改造投资合作协议
- 2025年度出国打工人员劳动合同终止与后续服务合同4篇
- 二零二五年度体育场馆虫鼠害防治与运动安全保障合同3篇
- 2025年度仓储租赁合同规范范本2篇
- 二零二五年度床具行业产业链整合与资源对接合同4篇
- 2025年度存量房居间买卖合同电子版示范文本4篇
- 二零二五年度航空航天零部件供应合同3篇
- 2025年度打桩工程材料供应合同3篇
- 2025年度绿色生态住宅承建与生态保护合同4篇
- 二零二五年度留学奖学金申请合同4篇
- 脑电信号处理与特征提取
- 游戏综合YY频道设计模板
- 高中数学知识点全总结(电子版)
- 小学科学项目化作业的设计与实施研究
- GB/T 10322.7-2004铁矿石粒度分布的筛分测定
- 2023新译林版新教材高中英语必修一重点词组归纳总结
- 苏教版四年级数学下册第3单元第2课时“常见的数量关系”教案
- 弘扬中华传统文化课件
- 基于协同过滤算法的电影推荐系统设计
- 消防应急预案流程图
- 人教统编版高中语文必修下册第六单元(单元总结)
评论
0/150
提交评论