版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年辽宁省沈阳市中考数学试卷一、选择题(本大题共10小题,共20.0分。在每小题列出的选项中,选出符合题目的一项)1.2的相反数是(
)A.−2 B.2 C.−12 2.如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是(
)A. B. C. D.3.我国自主研发的500m口径球面射电望远镜(FAST)有“中国天眼”之称,它的反射面面积约为2500000m2.用科学记数法表示数据250000A.0.25×106 B.25×104 C.4.下列计算结果正确的是(
)A.a8÷a2C.(a−b)2=5.不等式x≥1的解集在数轴上表示正确的是(
)A. B.C. D.6.某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包.为此,活动负责人征求了班内同学的意向,得到了如下数据:容量/L232527293133人数3252122则双肩包容量的众数是(
)A.21L B.23L C.29L D.33L7.下列说法正确的是(
)A.将油滴入水中,油会浮在水面上是不可能事件B.抛出的篮球会下落是随机事件C.了解一批圆珠笔芯的使用寿命,采用普查的方式D.若甲、乙两组数据的平均数相同,S甲2=28.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是(
)A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.二次函数y=−(x+1)2+2A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,四边形ABCD内接于⊙O,⊙O的半径为3,∠D=120°,则AC的长是(
)A.π B.23π C.2π 二、填空题(本大题共6小题,共18.0分)11.因式分解:a3+2a12.当a+b=3时,代数式2(a+2b)−(3a+5b)+5的值为______.13.若点A(−2,y1)和点B(−1,y2)都在反比例函数y=2x的图象上,则y1______y214.如图,直线AB//CD,直线EF分别与AB,CD交于点E,F,小明同学利用尺规按以下步骤作图:(1)以点E为圆心,以任意长为半径作弧交射线EB于点M,交射线EF于点N;(2)分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧在∠BEF内交于点(3)作射线EP交直线CD于点G;若∠EGF=29°,则∠BEF=______度.15.如图,王叔叔想用长为60m的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD,已知房屋外墙足够长,当矩形ABCD的边AB=______m时,羊圈的面积最大.16.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在直线AC上,AD=1,过点D作DE//AB交直线BC于点E,连接BD,点O是线段BD的中点,连接OE,则OE的长为______.三、解答题(本大题共9小题,共82.0分。解答应写出文字说明,证明过程或演算步骤)17.(本小题6.0分)计算:(π−2023)018.(本小题8.0分)为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用A,B,C依次表示这三类比赛内容).现将正面写有A,B,C的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容.选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母.请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率.19.(本小题8.0分)如图,在△ABC中,AB=AC,AD是BC边上的中线,点E在DA的延长线上,连接BE,过点C作CF//BE交AD的延长线于点F,连接BF,CE.求证:四边形BECF是菱形.20.(本小题8.0分)“书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际.某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查.问卷设置了五种选项:A“艺术类”,B“文学类”,C“科普类”,D“体育类”,E“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______名;(2)请直接补全条形统计图;(3)在扇形统计图中,A“艺术类”所对应的圆心角度数是______度;(4)根据抽样调查结果,请你估计该校1800名学生中,有多少名学生最喜爱C“科普类”图书.21.(本小题8.0分)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.22.(本小题10.0分)如图,AB是⊙O的直径,点C是⊙O上的一点(点C不与点A,B重合),连接AC、BC,点D是AB上的一点,AC=AD,BE交CD的延长线于点E,且BE=BC.(1)求证:BE是⊙O的切线;(2)若⊙O的半径为5,tanE=12,则BE23.(本小题10.0分)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交y轴于点B.直线y=12x−32与y轴交于点D,与直线AB交于点C(6,a).点M是线段BC上的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<245时,设线段EQ的长度为l,求l与②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.24.(本小题12.0分)如图1,在▱ABCD纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将▱ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C',D',射线C'E与射线AD交于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为______;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM交C'D'于点N,连接AN,EN,求△ANE的面积.25.(本小题12.0分)如图,在平面直角坐标系中,二次函数y=13x2+bx+c的图象经过点A(0,2),与x(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=3OE.以线段OD,OE为邻边作矩形ODFE,连接GD①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,FG,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G'FH',点G,H的对应点分别为G'、H',连接DE.当△G'FH'的边与线段DE垂直时,请直接写出点H'的横坐标.
2023年辽宁省沈阳市中考数学试卷答案和解析1.【答案】A
【解析】解:2的相反数是−2.故选:A.只有符号不同的两个数叫做互为相反数,由此即可得到答案.本题考查相反数,关键是掌握相反数的定义.2.【答案】A
【解析】解:此几何体的主视图从左往右分3列,小正方形的个数分别是1,2,1.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.3.【答案】D
【解析】解:250000=2.5×10故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及4.【答案】D
【解析】解:A、a8B、5ab−2ab=3ab,故此选项错误,不符合题意;C、(a−b)D、(−ab故选:D.直接利用同底数幂的乘法运算法则以及幂的乘方运算法则和积的乘方运算法则、完全平方公式分别计算得出答案.此题主要考查了同底数幂的乘法运算以及幂的乘方运算和积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.5.【答案】B
【解析】解:不等式x≥1的解集在数轴上表示为:故选:B.根据在数轴上表示不等式解集的方法表示不等式x≥1的解集即可.本题考查在数轴上表示不等式的解集,掌握在数轴上表示不等式解集的方法是正确解答的关键.6.【答案】C
【解析】解:∵29
出现21次,出现次数最多,∴众数是29,故选:C.根据一组数据中出现次数最多的数叫众数,直接求解即可得到答案.本题考查众数的定义:一组数据中出现次数最多的数叫众数.7.【答案】D
【解析】解:A、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B、抛出的篮球会下落是必然事件,故B不符合题意;C、了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;D、若甲、乙两组数据的平均数相同,S甲2=2,S故选:D.根据随机事件,全面调查与抽样调查,方差的意义,逐一判断即可解答.本题考查了随机事件,全面调查与抽样调查,方差,熟练掌握这些数学概念是解题的关键.8.【答案】B
【解析】解:由图可知该一次函数图象经过第一、三、四象限,则k>0,b<0.故答案为B.本题考查一次函数的系数k,b对图象的影响.一次函数图象经过第一、三、四象限,则k>0,b<0.本题考查了一次函数的系数k,b对图象的影响,这属于常考的基础题型.要理解k>0时,图象过一、三象限,k<0时,图象过二、四象限;b是图象与y轴交点的纵坐标,这样就可以很容易找出正确答案.9.【答案】B
【解析】解:∵y=−(x+1)∴顶点坐标为(−1,2),∴顶点在第二象限.故选:B.首先确定二次函数的顶点坐标,然后根据点的坐标特点写出顶点的位置.本题考查了二次函数的性质,解题的关键是确定二次函数的顶点坐标.10.【答案】C
【解析】解:∵四边形ABCD内接于⊙O,∠D=120°,∴∠B=60°,∴∠AOC=2∠B=120°,∴AC的长=故选:C.根据圆内接四边形的性质得到∠B=60°,由圆周角定理得到∠AOC=120°,根据弧长的公式即可得到结论.本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.11.【答案】a(a+1)【解析】解:a3=a(a2+2a+1),…(=a(a+1)2.…(故答案为:a(a+1)先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a2本题考查了提公因式法,公式法分解因式,难点在于对余下的项利用完全平方公式进行二次分解因式.12.【答案】2
【解析】解:2(a+2b)−(3a+5b)+5=2a+4b−3a−5b+5=−a−b+5=−(a+b)+5当a+b=3时,原式=−3+5=2.故答案为:2.先将原式去括号,然后合并同类项可得−a−b+5,再把前两项提取−1,然后把a+b的值代入可得结果.此题主要是考查了整式的化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.13.【答案】>
【解析】解:令x=−2,则y1令x=−1,则y2∵−1>−2,∴y故答案为:>.把x=−2和x=−1分别代入反比例函数y=2x中计算本题考查了反比例函数图象上点的坐标特征,计算出y的值是解题的关键.14.【答案】58
【解析】解:由作图得:EG平分∠BEF,∴∠BEF=2∠BEG,∵AB//CD,∴∠BEG=∠EGF=29°,∴∠BEF=2∠BEG=58°,故答案为:58.根据角平分线的性质及平行线的性质求解.本题考查了基本作图,掌握角平分线的性质及平行线的性质是解题的关键.15.【答案】15
【解析】解:设AB为x m,面积为Sm由题意可得:S=x(60−2x)=−2(x−15)∴当x=15时,S取得最大值,即AB=15m时,羊圈的面积最大,故答案为:15.根据题意和图形,可以写出面积与AB的长之间的函数关系式,然后化为顶点式,利用二次函数的性质,即可得到当AB为何值时,羊圈的面积最大.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质求最值.16.【答案】52或【解析】解:当在线段上时,连接OC,过点O作ON⊥BC于N,①当D在线段AC上时,∵AD=1,∴CD=AC−AD=2,∵∠BCD=90°,∴BD=∵点O是线段BD的中点,∴OC=OB=OD=1∵ON⊥BC,∴CN=BN=1∵DE//AB,∴∠COE=∠A=∠CBA=∠CED=45°,∴CE=CD=2,∴NE=2−3∵ON=∴OE=②当D在CA延长线上时,则CD=AD+AC=4,∵O是线段BD的中点,∠BCD=90°,∴OC=OB=OD=1∵ON⊥BC,∴CN=BN=1∵OB=OD,∴ON=1∵AB//DE,∴∠CAB=∠COE=∠CBA=∠CED=45°,∴CE=CD=4,∴EN=CE−CN=4−3∴OE=∴OE的长为52或故答案为:52或连接OC,过点O作ON⊥BC于N,分两种情况:①当D在线段AC上时,由勾股定理可得BD的长,再由直角三角形的性质可得CE=CD=2,最后根据勾股定理可得答案;②当D在CA延长线上时,则CD=AD+AC=4,根据直角三角形的性质可得EN=CE−CN=4−3此题考查的是等腰直角三角形的判定与性质、勾股定理等知识,进行分类讨论是解决此题的关键.17.【答案】解:原式=1+2+9−2=10.
【解析】根据零指数、负指数、二次根式、特殊三角函数值的性质计算即可.本题考查了实数的混合计算,零指数幂、负整指数幂、二次根式、特殊三角函数值的性质是解题关键.18.【答案】解:用树状图法表示所有等可能出现的结果如下:共有9种等可能出现的结果,其中小明和小梅抽到同一类比赛内容的有3种,所以小明和小梅抽到同一类比赛内容的概率为39=【解析】用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可.本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键.19.【答案】证明:∵AB=AC,AD是BC边上的中线,∴AD垂直平分BC,∴EB=EC,FB=FC,∵CF//BE,∴∠BED=∠CFD,∠EBD=∠FCD,∵DB=CD,∴△EBD≌△FCD(AAS),∴BE=FC,∴EB=BF=FC=EC,∴四边形EBFC是菱形.
【解析】由等腰三角形的性质,得到AD垂直平分BC,由线段垂直平分的性质推出EB=EC,FB=FC,由CF//BE,得到∠BED=∠CFD,∠EBD=∠FCD,又DB=CD,即可证明△EBD≌△FCD(AAS),得到BE=FC,即可证明四边形EBFC是菱形.本题考查菱形的判定,全等三角形的判定,等腰三角形的性质,关键是由等腰三角形的性质,得到AD垂直平分BC,推出EB=EC,FB=FC,由△EBD≌△FCD,得到BE=FC.20.【答案】100
36
【解析】解:(1)此次被调查的学生人数为:20÷20%=100(名),故答案为:100;(2)D类的人数为:100−10−20−40−5=25(名),补全条形统计图如下:(3)在扇形统计图中,A“艺术类”所对应的圆心角度数是:360°×10故答案为:36;(4)1800×40100×100%=720(答:估计该校1800名学生中,大约有720名学生最喜爱C“科普类”图书.(1)用B的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D类的人数,进而补全条形统计图;(3)用360°乘A“艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C类所占百分比即可.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【答案】解:设乙每小时加工x个这种零件,则甲每小时加工(x+2)个这种零件,根据题意得:25x+2解得:x=8,经检验,x=8是所列方程的解,且符合题意.答:乙每小时加工8个这种零件.
【解析】设乙每小时加工x个这种零件,则甲每小时加工(x+2)个这种零件,利用工作时间=工作总量÷工作效率,结合甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,可列出关于x的分式方程,解之经检验后,即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【答案】8
【解析】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵AC=AD,∴∠ACD=∠ADC,∵∠ADC=∠BDE,∴∠ACD=∠BDE,∵BE=BC,∴∠BCD=∠E,∴∠BDE+∠E=90°,∴∠DBE=180°−(∠BDE+∠E)=90°,即OB⊥BE.∵OB为⊙O的半径,∴BE是⊙O的切线;(2)解:∵tanE=12,∴DB设DB=x,则BE=2x,∴BC=BE=2x,AD=AB−BD=10−x,∵AC=AD,∴AC=10−x,∵AB是⊙O的直径,∴∠ACB=90°,∴AC∴(10−x)解得:x=0(不合题意,舍去)或x=4.∴BE=2x=8.故答案为:8.(1)利用圆周角定理,等腰三角形的性质定理,对顶角相等,三角形的内角和定理和圆的切线的判定定理解答即可得出结论;(2)利用直角三角形的边角关系定理得到DBBE=12,设DB=x,则BE=2x,利用x的代数式表示出线段AC,本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,三角形的内角和定理,圆的切线的判定定理,勾股定理,直角三角形的边角关系定理,熟练掌握圆周角定理是解题的关键.23.【答案】解:(1)∵点C(6,a)在直线y=1∴a=1∵一次函数y=kx+b的图象过点A(8,0)和点C(6,3∴8k+b=0解得k=−3∴直线AB的解析式为y=−3(2)①∵M点在直线y=−34x+6上,且M∴M的纵坐标为:−3∵N点在直线y=12x−32∴N点的纵坐标为:12∴|MN|=−3∵点C(6,32),线段EQ∴|CQ|=l+3∵|MN|=|CQ|,∴15即l=13②∵△AOQ的面积为3,∴1即12解得EQ=3由①知,EQ=13∴13解得m=23即m的值为235.【解析】(1)根据直线y=12x−32(2)①用含m的代数式表示出MN,再根据MN=CQ得出结论即可;②根据面积得出l的值,然后根据①的关系式得出m的值即可.本题主要考查一次函数的知识,熟练掌握一次函数的图象和性质,待定系数法求解析式等知识是解题的关键.24.【答案】5【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,∴∠FAE+∠AEC=180°,由折叠得:∠AEC'=∠AEC,∴∠FAE+∠AEC'=180°,∵∠AEF+∠AEC'=180°,∴∠FAE=∠AEF,∴AF=EF;(2)解:如图1,作AG⊥CB,交CB的延长线于G,在▱ABCD中,AD//BC,∴∠ABG=∠DAB=60°,∠FEG=180°−∠F=90°,∴AG=AB⋅sin∠ABG=10×由(1)知:AF=EF,∴矩形AGFE是正方形,∴AF=AG=5∴DF=AF−AD=5故答案为:5(3)解:如图2,作AQ⊥CB,交CB的延长线于Q,作MT⊥AF于T,交HD的延长线于G,作HR⊥MT于R,∵CB//AD,∴∠ABQ=∠DAB=60°,∴BQ=AB⋅cos60°=10×1∴EQ=BE+BQ=9,∴AE=由(1)知:AF=EF,∵FM⊥AE,∴AM=EM=1又∵▱ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C',D',∴HM=MN,∵cos∴AT∴AT∴AT=9同理可得:MT=5∴DT=AD−AT=6−9在Rt△DGT中,∠GDT=∠DAB=60°,DT=3∴GT=3∴MG=GT+MT=3∵tan∴HR∴设HR=53k∵tan∴HR∴GR=由GR+RM=MG得,15k+9k=4∴k=∴HR=5∵sin∴HR∴5∴HM=∴MN=∴S(1)可推出∠FAE+∠AEC=180°,∠AEC'=∠AEC,从而∠FAE+∠AEC'=180°,因为∠AEF+∠AEC'=180°,所以∠FAE=∠AEF;(2)作AG⊥CB,交CB的延长线于G,可推出矩形AGFE是正方形,可得出AF=AG=AB⋅(3)作AQ⊥CB,交CB的延长线于Q,作MT⊥AF于T,交HD的延长线于G,作HR⊥MT于R,解直角三角形ABQ,依次求得BQ、AQ、EQ、AE的值,进而求得AM的值,根据cos∠DAE=cos∠AEQ得出ATAM=EQAE,从而求得AT=92,同样求得MT=532,从而得出DT的值,解Rt△DGT求得GT,从而得出MG的值,根据tan∠FMT=tan本题考查了平行四边形的性质,矩形、正方形的判定和性质,解直角三角形,轴对称的性质等知识,解决问题的关键是作辅助线,熟练运用解直角三角形.25.【答案】解:(1)∵二次函数y=13x2+bx+c的图象经过点A(0,2)∴c=2解得:b=−∴此抛物线的解析式为y=1(2)①令y=0,则13解得:x=3或∴C(2∴OC=2∵OE=a,OG=2OE,OD=∴OG=2a,OD=∵四边形ODFE为矩形,∴EF=OD=3a∴E(0,a),D(3a,0),F(∴CD=OC−OD=2Ⅰ.当△GOD∽△FDC时,∴OG∴2a∴a=3Ⅱ.当△GOD∽△CDF时,∴OG∴2a∴a=6综上,当△GOD与△FDC相似时,a的值为32或6②∵点D与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业化物流管理与服务承包协议书版A版
- 2025年度农业现代化项目合作种植养殖合同范本3篇
- 2025年度健康医疗大数据分析与应用服务合同4篇
- 2025年度剧本改编委托创作合同样本3篇
- 2025年度商务写字楼租赁及商务配套服务合同4篇
- 2024版设备与集成服务采购合同
- 2025年度航空航天器材定制厂家合同样本3篇
- 2024年金融投资与咨询服务合同标的及投资领域
- 二零二五年度老旧小区改造安置房交易协议范本3篇
- 2024矿物资源勘探技术与咨询服务协议版
- 资本金管理制度文件模板
- 2025年生产主管年度工作计划
- 2025年急诊科护理工作计划
- 高中家长会 高二寒假线上家长会课件
- 违规行为与处罚管理制度
- 个人教师述职报告锦集10篇
- 四川省等八省2025年普通高中学业水平选择性考试适应性演练历史试题(含答案)
- 《内部培训师培训》课件
- 《雷达原理》课件-3.3.3教学课件:相控阵雷达
- 西方史学史课件3教学
- 2024年中国医药研发蓝皮书
评论
0/150
提交评论