八年级数学上册第一章勾股定理知识点与常见题型总结及练习新版北师大版_第1页
八年级数学上册第一章勾股定理知识点与常见题型总结及练习新版北师大版_第2页
八年级数学上册第一章勾股定理知识点与常见题型总结及练习新版北师大版_第3页
八年级数学上册第一章勾股定理知识点与常见题型总结及练习新版北师大版_第4页
八年级数学上册第一章勾股定理知识点与常见题型总结及练习新版北师大版_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1章勾股定理一.学问归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:假如直角三角形的两直角边分别为,,斜边为,那么勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发觉并证明白直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法许多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会变更②依据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必需明白所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的随意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理假如三角形三边长,,满意,那么这个三角形是直角三角形,其中为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形态,在运用这肯定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;②定理中,,及只是一种表现形式,不行认为是唯一的,如若三角形三边长,,满意,那么以,,为三边的三角形是直角三角形,但是为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数②记住常见的勾股数可以提高解题速度,如;;;等③用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在运用勾股定理时,必需把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加协助线(通常作垂线),构造直角三角形,以便正确运用勾股定理进行求解.8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系推断一个三角形是否是直角三角形,在详细推算过程中,应用两短边的平方和与最长边的平方进行比较,切不行不加思索的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或详细的几何问题中,是密不行分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:题型一:干脆考查勾股定理例1.在中,.⑴已知,.求的长⑵已知,,求的长分析:干脆应用勾股定理解:⑴⑵题型二:应用勾股定理建立方程例2.⑴在中,,,,于,=⑵已知直角三角形的两直角边长之比为,斜边长为,则这个三角形的面积为⑶已知直角三角形的周长为,斜边长为,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可依据勾股定理列方程求解解:⑴,⑵设两直角边的长分别为,,,⑶设两直角边分别为,,则,,可得例3.如图中,,,,,求的长分析:此题将勾股定理与全等三角形的学问结合起来解:作于,,在中在中,,例4.如图,,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高,另一棵高,两树相距,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了分析:依据题意建立数学模型,如图,,,过点作,垂足为,则,在中,由勾股定理得答案:题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为,,,判定是否为①,,②,,解:①,是直角三角形且②,,不是直角三角形例7.三边长为,,满意,,的三角形是什么形态?解:此三角形是直角三角形理由:,且所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知中,,,边上的中线,求证:证明:为中线,在中,,,,,,选择题1、在Rt△ABC中,∠C=90°,三边长分别为a、b、c,则下列结论中恒成立的是() A、2ab<c2 B、2ab≥c2 C、2ab>c2 D、2ab≤c22、已知x、y为正数,且│x2-4│+(y2-3)2=0,假如以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为() A、5 B、25 C、7 D、153、直角三角形的始终角边长为12,另外两边之长为自然数,则满意要求的直角三角形共有()A、4个 B、5个 C、6个 D、8个4、下列命题①假如a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②假如直角三角形的两边是3、4,那么斜边必是5;③假如一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1。其中正确的是()A、①② B、①③ C、①④ D、②④5、若△ABC的三边a、b、c满意a2+b2+c2+338=10a+24b+26c,则此△为()A、锐角三角形 B、钝角三角形 C、直角三角形 D、不能确定6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()A、40 B、80 C、40或360 D、80或3607、如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()ADBCADBCB′A′C′D′第9题图ABABDC第7题图ACDBE第8题图8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A、2㎝ B、3㎝ C、4㎝ D、5㎝9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路途的长是_____________。10.在安静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m。二.解答题ABABCD第1题图AAA′BAA′OA2、数组3、4、5;5、12、13;7、24、25;9、40、41;……都是勾股数,若奇数n为直角三角形的始终角边,用含n的代数式表示斜边和另始终角边。并写出接下来的两组勾股数。3、一架方梯长25米,如图,斜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论