下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page118.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的性质(1)理解并驾驭平行四边形的概念和平行四边形对边、对角相等的性质.重点平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.一、复习导入1.师:我们一起来视察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象.生:平行四边形.师:平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?生:自动伸缩门、挂衣服的简易衣钩等.师:你能总结出平行四边形的定义吗?(小组探讨,老师总结)(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“▱”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.①∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC(性质).2.探究.师:平行四边形是一种特别的四边形,它除了具有四边形的性质和两组对边分别平行的性质外,还有什么特别的性质呢?我们一起来探究一下.(1)由定义知道,平行四边形的对边平行.依据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.如图,已知:▱ABCD.求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作四边形ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.由上面的证明可知:∠1=∠3,∠2=∠4,∴∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形的性质1平行四边形的对边相等.平行四边形的性质2平行四边形的对角相等.二、新课教授【例】教材第42页例1师:距离是几何中的重要度量之一,前面我们已经学习了点与点之间的距离、点到直线的距离.在此基础上,我们结合平行四边形的概念和性质,介绍平行线之间的距离.如图1,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.也就是说,两条平行线之间的任何两条平行线段都相等.从上面的结论可以知道,假如两条直线平行,那么一条直线上全部的点到另一条直线的距离都相等.两条平行线中,一条直线上随意一点到另一条直线的距离,叫做这两条平行线之间的距离.如图2,a∥b,A是a上的随意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.三、巩固练习1.▱ABCD中,∠A比∠B大20°,则∠C的度数为()A.60°B.80°C.100°D.120°【答案】C2.在下列图形的性质中,平行四边形不肯定具有的是()A.对角相等B.对角互补C.邻角互补D.内角和是360°【答案】B3.在▱ABCD中,假如EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有()A.4个B.6个C.8个D.9个【答案】D四、课堂小结1.两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:对边平行;对边相等;对角相等我在设计本节课时先让学生看图形,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义动身得到第一特性质,再由学生动手操作和老
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏2025年江苏省卫生健康委员会所属事业单位长期招聘189人笔试历年参考题库附带答案详解
- 教育投资中的财务规划与风险管理
- 武汉2025年湖北武汉市教育系统专项招聘教师679人笔试历年参考题库附带答案详解
- 移动端内容营销策略研究
- 揭阳2024年广东揭阳技师学院招聘急需紧缺人才17人笔试历年参考题库附带答案详解
- 成都四川成都简阳市江源镇便民服务和智慧蓉城运行中心招聘综治巡防队员4人笔试历年参考题库附带答案详解
- 二零二五年度城市绿化工程承包合同标准版8篇
- 2025年牛津上海版九年级地理下册月考试卷
- 二零二五年度车间承包与设备维护一体化合同4篇
- 2025年度个人宠物医院经营贷款合同2篇
- 高考满分作文常见结构完全解读
- 专题2-2十三种高考补充函数归类(讲练)
- 理光投影机pj k360功能介绍
- 六年级数学上册100道口算题(全册完整版)
- 八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版
- 帕萨特B5维修手册及帕萨特B5全车电路图
- 系统解剖学考试重点笔记
- 小学五年级解方程应用题6
- 云南省地图含市县地图矢量分层地图行政区划市县概况ppt模板
- 年月江西省南昌市某综合楼工程造价指标及
- 作物栽培学课件棉花
评论
0/150
提交评论