




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
#利用大语言模型
促进综合图学习能力02
大语言模型进行图学习的现状概述01
为什么应用大语言模型进行图学习
03
大语言模型促进跨领域跨任务的统一图学习04
潜在研究方向目录#01为什么应用大语言模型进行图学习为什么应用大语言模型进行图学习大语言模型的能力图数据的特征为什么应用大语言模型进行图学习大语言模型的能力LLMs
have
demonstrated
their
strong
text
encoding/decoding
ability.Zhao
W
X,
Zhou
K,
Li
J,
et
al.
A
survey
of
large
language
models[J].
arXiv
preprint
arXiv:2303.18223,2023.为什么应用大语言模型进行图学习大语言模型的能力LLMs
have
shown
newly
found
emergent
ability
(e.g.,
reasoning).Wei
J,
Wang
X,
Schuurmans
D,
et
al.
Chain-of-thought
prompting
elicits
reasoning
in
largelanguage
models[J].
Advances
in
neural
information
processing
systems,
2022,
35:
24824-24837.为什么应用大语言模型进行图学习图数据的特征In
real
world,
text
and
graph
usually
appears
simultaneously.Text
data
are
associated
with
rich
structure
information
in
the
form
of
graphs.Graph
data
are
captioned
with
rich
textual
information.#02大语言模型进行图学习的现状概述大语言模型进行图学习的现状概述不同的图数据应用场景图任务中大语言模型的不同角色不同的图数据应用场景Jin
B,
Liu
G,
Han
C,
et
al.
Large
language
models
on
graphs:
A
comprehensive
survey[J].
arXivpreprintarXiv:2312.02783,
2023.大语言模型进行图学习的现状概述大语言模型进行图学习的现状概述不同的图数据应用场景:Pure
GraphDefinition:
Graph
with
no
text
information
or
no
semantically
rich
text
information.
eg.
traffic
graphsor
power
transmission
graph.Problems
on
Pure
Graphs:graph
reasoning
tasks
likeconnectivityshortestpathsubgraph
matchinglogical
rule
induction…Wang
H,
Feng
S,
He
T,
et
al.
Can
language
models
solve
graph
problems
in
natural
language?[J].Advances
in
Neural
Information
Processing
Systems,
2024,
36.大语言模型进行图学习的现状概述不同的图数据应用场景:Pure
GraphGraph
with
no
text
information
or
no
semantically
rich
text
information.
eg.
traffic
graphs
or
powertransmission
graph.Wang
H,
Feng
S,
He
T,
et
al.
Can
language
models
solve
graph
problems
in
natural
language?[J].Advances
in
Neural
Information
Processing
Systems,
2024,
36.大语言模型进行图学习的现状概述不同的图数据应用场景:Text-Paired
GraphSeidl,
P.,
Vall,
A.,
Hochreiter,
S.,
&
Klambauer,
G.,
Enhancing
activity
prediction
models
in
drug
discoverywith
the
ability
to
understand
human
language,
in
ICML,
2023大语言模型进行图学习的现状概述不同的图数据应用场景:Text-Paired
GraphSeidl,
P.,
Vall,
A.,
Hochreiter,
S.,
&
Klambauer,
G.,
Enhancing
activity
prediction
models
in
drug
discoverywith
the
ability
to
understand
human
language,
in
ICML,
2023大语言模型进行图学习的现状概述不同的图数据应用场景:Text-Attributed
GraphRuosong
Ye,
Caiqi
Zhang,
Runhui
Wang,
Shuyuan
Xu,
and
Yongfeng
Zhang.
2024.
Language
is
All
a
Graph
Needs.
In
Findings
of
the
Association
for
Computational
Linguistics:
EACL
2024,
pages
1955–1973,
St.
Julian’s,
Malta.
Association
for
Computational
Linguistics.大语言模型进行图学习的现状概述不同的图数据应用场景:Text-Attributed
GraphRuosong
Ye,
Caiqi
Zhang,
Runhui
Wang,
Shuyuan
Xu,
and
Yongfeng
Zhang.
2024.
Language
is
All
a
Graph
Needs.
In
Findings
of
the
Association
for
Computational
Linguistics:
EACL
2024,
pages
1955–1973,
St.
Julian’s,
Malta.
Association
for
Computational
Linguistics.大语言模型进行图学习的现状概述图任务中大语言模型的不同角色LLM
as
Enhancer/EncoderLLM
as
PredictorLLM
as
Aligner大语言模型进行图学习的现状概述Eembedding-based图任务中大语言模型的不同角色:LLM
as
Enhancer/EncoderExplanation-based大语言模型进行图学习的现状概述LLM
as
Enhancer/Encoder:
Explanation-basedICLR’24Basically,
using
T
andA,to
generate
P
and
E,then
use
T,
A,
P,
Easenriched
text
feature.He
X,
Bresson
X,
Laurent
T,
et
al.
Explanations
as
features:
Llm-based
features
for
text-attributed
graphs[J].arXiv
preprint
arXiv:2305.19523,
2023.大语言模型进行图学习的现状概述LLM
as
Enhancer/Encoder:
Explanation-basedHe
X,
Bresson
X,
Laurent
T,
et
al.
Explanations
as
features:
Llm-based
features
for
text-attributed
graphs[J].arXiv
preprint
arXiv:2305.19523,
2023.大语言模型进行图学习的现状概述LLM
as
Enhancer/Encoder:
Embedding-basedObservation:Fine-tune-based
LLMsmay
fail
at
low
labelingrate
settings.Chen,
Z.,
Mao,
H.,
Li,
H.,
Jin,
W.,
Wen,
H.,
Wei,
X.,
Wang,
S.,
Yin,
D.,
Fan,
W.,
Liu,
H.,
&
Tang,
J.
(2024).
Exploring
thePotential
of
Large
Language
Models
(LLMs)
in
Learning
on
Graphs
(arXiv:2307.03393).
arXiv./abs/2307.03393Low
label
ratioHigh
label
ratio大语言模型进行图学习的现状概述LLM
as
Enhancer/Encoder:
Embedding-basedObservation:Under
embedding-basedstructure,
the
combination
ofdeep
sentence
embedding
withGNNs
makes
a
strong
baseline.Low
label
ratioChen,
Z.,
Mao,
H.,
Li,
H.,
Jin,
W.,
Wen,
H.,
Wei,
X.,
Wang,
S.,
Yin,
D.,
Fan,
W.,
Liu,
H.,
&
Tang,
J.
(2024).
Exploring
thePotential
of
Large
Language
Models
(LLMs)
in
Learning
on
Graphs
(arXiv:2307.03393).
arXiv./abs/2307.03393High
label
ratio大语言模型进行图学习的现状概述图任务中大语言模型的不同角色:LLM
as
PredictorFlatten-basedGNN-based大语言模型进行图学习的现状概述LLM
asPredictor:
Flatten-basedGuo,
J.,
Du,
L.,
&
Liu,
H.
(2023).
Gpt4graph:
Can
large
language
models
understand
graphstructured
data?
an
empirical
evaluation
and
benchmarking.
arXiv
preprint
arXiv:2305.15066.大语言模型进行图学习的现状概述LLM
asPredictor:
Flatten-basedGuo,
J.,
Du,
L.,
&
Liu,
H.
(2023).
Gpt4graph:
Can
large
language
models
understand
graphstructured
data?
an
empirical
evaluation
and
benchmarking.
arXiv
preprint
arXiv:2305.15066.大语言模型进行图学习的现状概述LLM
as
Predictor:
GNN-basedTang,
Jiabin,
et
al.
"Graphgpt:
Graph
instruction
tuning
for
large
language
models."
arXiv
preprintarXiv:2310.13023
(2023).大语言模型进行图学习的现状概述LLM
as
Predictor:
GNN-basedTang,
Jiabin,
et
al.
"Graphgpt:
Graph
instruction
tuning
for
large
language
models."
arXiv
preprintarXiv:2310.13023
(2023).大语言模型进行图学习的现状概述图任务中大语言模型的不同角色:LLM
as
Aligner大语言模型进行图学习的现状概述LLM
as
Aligner:ContrastiveWen,
Z.,
&
Fang,
Y.
(2023).
Prompt
tuning
on
graph-augmented
low-resource
textclassification.
arXiv
preprint
arXiv:2307.10230.大语言模型进行图学习的现状概述LLM
as
Aligner:DistillationMavromatis,
Costas,
et
al.
"Train
your
own
gnn
teacher:
Graph-aware
distillation
on
textualgraphs."
Joint
European
Conference
on
Machine
Learning
and
Knowledge
Discovery
in
Databases.Cham:
Springer
Nature
Switzerland,
2023.#03大语言模型促进跨领域跨任务的统一图学习大语言模型促进跨领域跨任务的统一图学习“Cross
Domain”
before
LLMsCross
Domain
Graph
Learning
with
LLM大语言模型促进跨领域跨任务的统一图学习“Cross
Domain”
before
LLMsKDD’20:
“We
design
Graph
Contrastive
CodingQiu,
Jiezhong,
et
al.
"Gcc:
Graph
contrastive
coding
for
graph
neural
network
pre-training."
Proceedings
of
the
26th
ACM
SIGKDD
international
conference
on
knowledge
discovery&
data
mining.
2020.(GCC)—a
self-supervised
graph
neural
network
pre-training
framework—to
capture
the
universal
networktopological
properties
across
multiple
networks.”Limitation:
the
node
features
are
notthe
same,
among
graphs
fromdifferent
domain.大语言模型促进跨领域跨任务的统一图学习Cross
Domain
Graph
Learning
with
LLMOne
for
all:Towards
trainingone
graphmodel
for
allclassificationtasksLiu,
Hao,
et
al.
"One
for
all:
Towards
training
one
graph
model
for
all
classification
tasks."
arXivpreprint
arXiv:2310.00149
(2023).大语言模型促进跨领域跨任务的统一图学习Cross
Domain
Graph
Learning
with
LLMLiu,
Hao,
et
al.
"One
for
all:
Towards
training
one
graph
model
for
all
classification
tasks."
arXivpreprint
arXiv:2310.00149
(2023).大语言模型促进跨领域跨任务的统一图学习Cross
Domain
Graph
Learning
with
LLMOFA
successfully
enableda
single
graph
model
to
be
effective
onall
graph
datasets
across
differentdomains
as
OFA-joint
performs
well
onall
datasets.Further,
we
can
see
that
OFA-jointachieves
better
results
on
most
of
thedatasets
compared
toOFA-ind.
Thismay
indicate
that
by
leveraging
thetext
feature,
the
knowledge
learnedfrom
one
domain
can
be
useful
for
thelearning
of
other
domains.Liu,
Hao,
et
al.
"One
for
all:
Towards
training
one
graph
model
for
all
classification
tasks."
arXivpreprint
arXiv:2310.00149
(2023).大语言模型促进跨领域跨任务的统一图学习Cross
Domain
Graph
Learning
with
LLMOverview
of
UniGraph
framework.
In
pre-training,
we
employ
a
self-supervised
approach,
leveragingTAGs
to
unify
diverse
graph
data.
This
phase
involves
a
cascaded
architecture
combining
LMs
andGNNs.He,
Yufei,
and
Bryan
Hooi.
"UniGraph:
Learning
a
Cross-Domain
Graph
Foundation
Model
FromNatural
Language."
arXiv
preprint
arXiv:2402.13630
(2024).大语言模型促进跨领域跨任务的统一图学习Cross
Domain
Graph
Learning
with
LLMWe
can
observe
thatpre-training
ongraphs
from
the
same
domain
enhancesthe
performance
of
downstream
tasks.This
suggests
that
in-domain
transferremains
simpler
than
cross-domaintransfer.He,
Yufei,
and
Bryan
Hooi.
"UniGraph:
Learning
a
Cross-Domain
Graph
Foundation
Model
FromNatural
Language."
arXiv
preprint
arXiv:2402.13630
(2024).Experiment
results
in
few-shot
transfer.大语言模型促进跨领域跨任务的统一图学习Cross
Domain
Graph
Learning
with
LLMTan,
Yanchao,
et
al.
"MuseGraph:
Graph-oriented
Instruction
Tuning
of
Large
Language
Modelsfor
Generic
Graph
Mining."
arXiv
preprint
arXiv:2403.04780
(2024).大语言模型促进跨领域跨任务的统一图学习Cross
Domain
Graph
Learning
with
LLMTan,
Yanchao,
et
al.
"MuseGraph:
Graph-oriented
Instruction
Tuning
of
Large
Language
Modelsfor
Generic
Graph
Mining."
arXiv
preprint
arXiv:2403.04780
(2024).#04潜在研究方向潜在研究方向What
LLMs
truly
learned
from
GraphsObservation
1:LLMs
interpret
inputs
more
as
contextual
paragraphs
than
as
graphs
with
topologicalstructures.
Neither
linearizing
nor
rewiring
ego-graph
has
significant
impact
on
theclassification
performance
of
LLMs.Linearize
ego-graph:
We
create
a
linearized
version
of
the
graph-structured
prompts
by
onlykeeping
all
neighbors’
text
attributes
in
the
prompts.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXivpreprint
arXiv:2309.16595
(2023).潜在研究方向What
LLMs
truly
learned
from
GraphsObservation
1:LLMs
interpret
inputs
more
as
contextual
paragraphs
than
as
graphs
with
topologicalstructures.
Neither
linearizing
nor
rewiring
ego-graph
has
significant
impact
on
theclassification
performance
of
LLMs.Rewire
ego-graph:We
randomly
rewire
theego-graph
by
differentstrategies.
Then
wecompare
theperformance
of
MPNNsand
LLMs
under
eachstrategy.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXivpreprint
arXiv:2309.16595
(2023).潜在研究方向What
LLMs
truly
learned
from
GraphsObservation
2:LLMs
benefit
from
structural
information
only
when
the
neighborhood
is
homophilous,which
means
the
neighbors
contain
phrases
related
to
the
groundtruth
label
of
the
targetnode.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXivpreprint
arXiv:2309.16595
(2023).潜在研究方向What
LLMs
truly
learned
from
GraphsObservation
3:LLMs
benefit
from
structural
information
when
the
target
node
does
not
contain
enoughphrases
for
the
model
to
make
reasonable
prediction.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXivpreprint
arXiv:2309.16595
(2023).潜在研究方向Truly
“Generative”
Cross
Domain
LLM-based
Graph
LearningIs
there
universal
structure
features
that
benefit
for
graph
learningof
graph
from
different
domain?How
can
these
complex
topological
features,
instead
of
the
textcontext,
be
really
captured
by
LLMs?致谢Large
Language
Models
on
Graphs:
A
Comprehensive
Survey致谢言鹏韦浙江大学信息资源管理系2021级博士研究生阿里巴巴通义实验室实习生ReferencesZhao
W
X,
Zhou
K,
Li
J,
et
al.
A
survey
of
large
language
models[J].
arXiv
preprint
arXiv:2303.18223,
2023.Huang,
Jin,
et
al.
"Can
llms
effectively
leverage
graph
structural
information:
when
and
why."
arXiv
preprintarXiv:2309.16595
(2023).Tan,
Yanchao,
et
al.
"MuseGraph:
Graph-oriented
Instruction
Tuning
of
Large
Language
Models
for
Generic
GraphMining."
arXiv
preprint
arXiv:2403.04780(2024).He,
Yufei,
and
Bryan
Hooi.
"UniGraph:
Learning
a
Cross-Domain
Graph
Foundation
Model
From
Natural
Language."
arXivpreprint
arXiv:2402.13630
(2024).Liu,
Hao,
et
al.
"One
for
all:
Towards
training
one
graph
model
for
all
classification
tasks."
arXiv
preprintarXiv:2310.00149
(2023).Qiu,
Jiezhong,
et
al.
"Gcc:
Graph
contrastive
coding
for
graph
neural
network
pre-training."
Proceedings
of
the
26th
ACMSIGKDD
international
conference
on
knowledge
discovery
&
data
mining.
2020.Mavromatis,
Costas,
et
al.
"Train
your
own
gnn
teacher:
Graph-aware
distillation
on
textual
graphs."
Joint
European
Conferenceon
Machine
Learning
and
Knowledge
Discovery
in
Databases.
Cham:
Springer
Nature
Switzerland,
2023.Wen,
Z.,
&
Fang,
Y.
(2023).
Prompt
tuning
on
graph-augmented
low-resource
text
classification.
arXiv
preprintarXiv:2307.10230.Tang,
Jiabin,
et
al.
"Graphgpt:
Graph
instruction
tuning
for
large
language
models."
arXiv
preprint
arXiv:2310.13023
(2023).Guo,
J.,
Du,
L.,
&
Liu,
H.
(2023).
Gpt4graph:
Can
large
language
models
understand
graph
structured
data?
an
empiricalevaluation
and
benchmarking.
arXiv
preprint
arXiv:2305.15066.ReferencesXie,
Han,
et
al.
"Graph-aware
language
model
pre-training
on
a
large
graph
corpus
can
help
multiple
graphapplications."
Pro
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度工伤事故赔偿及赔偿金计算标准协议
- 二零二五年度全国旅游合同集合:旅游大数据分析及应用合作协议
- 二零二五年度智能交通项目经理服务契约
- 二零二五年度割双眼皮手术术前术后医疗纠纷处理协议
- 2025年度耕地租赁与农业绿色防控技术合作合同
- 2025年度鱼塘承包及渔业人才培养合作协议
- 2025年度自驾游车辆安全责任免除协议书
- 2025年度服饰店铺委托经营合作协议
- 二零二五年度农产品销售中介服务协议
- 2025年度虚拟现实与增强现实股东合作协议书
- Moldflow模流分析基础教程 课件 第7章
- 四川省高等教育自学考试毕业生登记表【模板】
- 食品营养学(暨南大学)智慧树知到答案章节测试2023年
- 核和辐射事故现场卫生救援
- 学生心理危机识别与干预(家长教师版)
- 广西建设工程质量检测和建筑材料试验收费项目及标准指导性意见(新)2023.10.11
- 象征手法 (2)课件
- 八项规定学习课件
- 《过零丁洋》公开课件
- 黄精栽培技术PPT
- 08S305-小型潜水泵选用及安装图集
评论
0/150
提交评论