版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年沪科新版一年级语文下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、看图选音()。
A.yúB.yǘC.yǔD.yǜ2、下面书写笔顺不正确的是()。A.B.C.D.3、在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.804、下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆5、如图;四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()
A.130°B.100°C.65°D.50°6、下面词语中,有错别字的是哪一项?()A.低头B.东天C.玩笑D.请坐评卷人得分二、填空题(共7题,共14分)7、读拼音;下面的声音是谁的?
秋风____小猫____小狗____小鸡____浪花____
A;miāomiāomiāo
B;wànɡwànɡwànɡ
C;huāhuāhuā
D;hūhūhū
E、jījījī8、把下面部首相同的字写到一起。
笔练熟描篮经照按。
____;____;____;____9、许共____画,言共____画。10、用下面的字两两组词。
工昨天作呼穿衣噜。
________________11、读拼音,写汉字。jiànmiànzhǐyǒuxīnɡxinɡ____________12、看图,写汉字。________________13、选择正确的读音;填在横线上。
。影(yǐngyīng)_______黑(hēihēng)_______狗(guǒgǒu)_______左(zǒuzuǒ)_______评卷人得分三、解答题(共8题,共16分)14、先化简,再求值:(1x−2+1x+2
)•(x2﹣4),其中x=5
.15、学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?16、某校为了解九年级学生的体重情况;随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:
体重频数分布表。
。组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016
(1)填空:①m=______(直接写出结果);
②在扇形统计图中;C组所在扇形的圆心角的度数等于______度;
(2)如果该校九年级有1000名学生;请估算九年级体重低于60千克的学生大约有多少人?
17、如图,AB是⊙O的直径,AB=43
;点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.
(1)求证:CB是∠ECP的平分线;
(2)求证:CF=CE;
(3)当CFCP=34
时,求劣弧BC
的长度(结果保留π)
18、先化简,再求值:(1x−2+1x+2
)•(x2﹣4),其中x=5
.19、如图所示;已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.
(1)求证:AD⊥BF;
(2)若BF=BC;求∠ADC的度数.
20、如图,AB是⊙O的直径,AB=43
;点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.
(1)求证:CB是∠ECP的平分线;
(2)求证:CF=CE;
(3)当CFCP=34
时,求劣弧BC
的长度(结果保留π)
21、如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(23
;0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为(23
;2);
(2)是否存在这样的点D;使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:DEDB=33
;
②设AD=x;矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
评卷人得分四、连词成句(共1题,共8分)22、给下列词语排排队评卷人得分五、问答题(共1题,共8分)23、请写出街上的任意五种建筑物形式,如书店。评卷人得分六、默写(共1题,共5分)24、按课文《悯农》内容默写。
①春种一粒粟,____。四海无闲田,____。参考答案一、选择题(共6题,共12分)1、C【分析】【分析】雨的音节;ü上去点,是个三声声调,故选C
【点评】本题考查声调掌握情况,yu的外形特征。2、B【分析】【分析】字母a的写法是先写左半圆;然后写竖弯,故选B。
【点评】本题考查三个单韵母的正确写法。3、B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解析】解:数据90出现了两次;次数最多,所以这组数据的众数是90.
故选:B.4、D【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解析】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.
故选:D.5、C【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解析】解:∵∠CBE=50°;
∴∠ABC=180°﹣∠CBE=180°﹣50°=130°;
∵四边形ABCD为⊙O的内接四边形;
∴∠D=180°﹣∠ABC=180°﹣130°=50°;
∵DA=DC;
∴∠DAC=180°−∠D2=
65°;
故选:C.6、B【分析】本题考查了学生辨析错别字的能力,根据平时所学生字及平时的积累,结合具体语境,对每个词中的字进行分析完成即可。【解析】A、C、D正确。B.有误,冬天:同冬季。故“东天”的“东”错误。故选:B。二、填空题(共7题,共14分)7、DABEC【分析】【分析】这类题目是主要考查了学生的文化常识。小猫的声音是喵喵喵;小狗的声音是汪汪汪,浪花发出的声音是哗哗哗,秋风发出的声音是呼呼呼,小鸡发出的声音是叽叽叽。
【点评】考查了学生的文化常识,学生可以根据日常经验回答。8、笔、篮练、经熟、照描、按【分析】【分析】通过此题;对本课内容的字形进行了相应的考察,帮助学生巩固对之前所学知识的掌握,掌握对汉字部首的分类,更好地掌握理解;笔篮两个字都是“⺮”偏旁的。经练两个字都是“纟”字偏旁的;熟照两个字都是“灬”偏旁构成的,描按两个字都是带有“扌”字偏旁结构的。
【点评】通过此题的考察,能够考察学生对汉字按照偏旁部首分类归纳的能力,能更好的熟记汉字。9、67【分析】【分析】考查学生对生字笔画的掌握。许共6画;言共7画。
【点评】考查学生对生字笔画的掌握,学生要会辨认。10、工作昨天呼噜穿衣【分析】【分析】考查学生对词义的掌握。这几个字可以组成:工作;昨天、呼噜、穿衣。
【点评】考查学生对词义的掌握,学生不仅要掌握生字,还有掌握它们的组词。11、见面只有星星【分析】【分析】这类题目是考查学生对拼音的掌握。见面;碰面。只有,为数不多的。星星,天上的群星。
【点评】考查学生对拼音的熟悉程度。12、电话书架茶壶写字台【分析】【分析】这类题目是考查学生对生字的掌握。第一幅图是电话;第二幅图是书架,第三幅图是茶壶,第四幅图是写字台。
【点评】本题考查学生看图识字的能力,学生要学会书写生字。13、略
【分析】考查了选择正确的读音,注意平翘舌和声调的掌握情况,这样才能做到选择正确的读音。字音是和词义联系起来的,也可结合词义来辨析。【解析】故答案为:yǐnghēiguǒzuǒ三、解答题(共8题,共16分)14、略
【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解析】解:原式=[x+2(x+2)(x−2)+x−2(x+2)(x−2)
]•(x+2)(x﹣2)
=2x(x+2)(x−2)
•(x+2)(x﹣2)
=2x;
当x=5
时;
原式=25
.15、略
【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解析】解:设男生志愿者有x人;女生志愿者有y人;
根据题意得:30x+20y=68050x+40y=1240
;
解得:x=12y=16
.
答:男生志愿者有12人,女生志愿者有16人.16、略
【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;
(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解析】解:(1)①调查的人数为:40÷20%=200(人);
∴m=200﹣12﹣80﹣40﹣16=52;
②C组所在扇形的圆心角的度数为80200×
360°=144°;
故答案为:52;144;
(2)九年级体重低于60千克的学生大约有12+52+80200×
1000=720(人).17、略
【分析】(1)根据等角的余角相等证明即可;
(2)欲证明CF=CE;只要证明△ACF≌△ACE即可;
(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解析】(1)证明:∵OC=OB;
∴∠OCB=∠OBC;
∵PF是⊙O的切线;CE⊥AB;
∴∠OCP=∠CEB=90°;
∴∠PCB+∠OCB=90°;∠BCE+∠OBC=90°;
∴∠BCE=∠BCP;
∴BC平分∠PCE.
(2)证明:连接AC.
∵AB是直径;
∴∠ACB=90°;
∴∠BCP+∠ACF=90°;∠ACE+∠BCE=90°;
∵∠BCP=∠BCE;
∴∠ACF=∠ACE;
∵∠F=∠AEC=90°;AC=AC;
∴△ACF≌△ACE;
∴CF=CE.
解法二:证明:连接AC.
∵OA=OC
∴∠BAC=∠ACO;
∵CD平行AF;
∴∠FAC=∠ACD;
∴∠FAC=∠CAO;∵CF⊥AF,CE⊥AB;
∴CF=CE.
(3)解:作BM⊥PF于M.则CE=CM=CF;设CE=CM=CF=3a,PC=4a,PM=a;
∵∠MCB+∠P=90°;∠P+∠PBM=90°;
∴∠MCB=∠PBM;
∵CD是直径;BM⊥PC;
∴∠CMB=∠BMP=90°;
∴△BMC∽△PMB;
∴BMPM=CMBM
;
∴BM2=CM•PM=3a2;
∴BM=3
a;
∴tan∠BCM=BMCM=33
;
∴∠BCM=30°;
∴∠OCB=∠OBC=∠BOC=60°;
∴BC
的长=60⋅π⋅23180=233
π.
18、略
【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解析】解:原式=[x+2(x+2)(x−2)+x−2(x+2)(x−2)
]•(x+2)(x﹣2)
=2x(x+2)(x−2)
•(x+2)(x﹣2)
=2x;
当x=5
时;
原式=25
.19、略
【分析】(1)连结DB;DF.根据菱形四边相等得出AB=AD=FA;再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;
(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=12
CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解析】(1)证明:如图;连结DB;DF.
∵四边形ABCD;ADEF都是菱形;
∴AB=BC=CD=DA;AD=DE=EF=FA.
在△BAD与△FAD中;
AB=AF∠BAD=∠FADAD=AD
;
∴△BAD≌△FAD;
∴DB=DF;
∴D在线段BF的垂直平分线上;
∵AB=AF;
∴A在线段BF的垂直平分线上;
∴AD是线段BF的垂直平分线;
∴AD⊥BF;
解法二:∵四边形ABCD;ADEF都是菱形;
∴AB=BC=CD=DA;AD=DE=EF=FA.
∴AB=AF;∵∠BAD=∠FAD;
∴AD⊥BF(等腰三角形三线合一);
(2)如图;设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形;
∴DG=BH=12
BF.
∵BF=BC;BC=CD;
∴DG=12
CD.
在直角△CDG中,∵∠CGD=90°,DG=12
CD;
∴∠C=30°;
∵BC∥AD;
∴∠ADC=180°﹣∠C=150°.
20、略
【分析】(1)根据等角的余角相等证明即可;
(2)欲证明CF=CE;只要证明△ACF≌△ACE即可;
(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解析】(1)证明:∵OC=OB;
∴∠OCB=∠OBC;
∵PF是⊙O的切线;CE⊥AB;
∴∠OCP=∠CEB=90°;
∴∠PCB+∠OCB=90°;∠BCE+∠OBC=90°;
∴∠BCE=∠BCP;
∴BC平分∠PCE.
(2)证明:连接AC.
∵AB是直径;
∴∠ACB=90°;
∴∠BCP+∠ACF=90°;∠ACE+∠BCE=90°;
∵∠BCP=∠BCE;
∴∠ACF=∠ACE;
∵∠F=∠AEC=90°;AC=AC;
∴△ACF≌△ACE;
∴CF=CE.
解法二:证明:连接AC.
∵OA=OC
∴∠BAC=∠ACO;
∵CD平行AF;
∴∠FAC=∠ACD;
∴∠FAC=∠CAO;∵CF⊥AF,CE⊥AB;
∴CF=CE.
(3)解:作BM⊥PF于M.则CE=CM=CF;设CE=CM=CF=3a,PC=4a,PM=a;
∵∠MCB+∠P=90°;∠P+∠PBM=90°;
∴∠MCB=∠PBM;
∵CD是直径;BM⊥PC;
∴∠CMB=∠BMP=90°;
∴△BMC∽△PMB;
∴BMPM=CMBM
;
∴BM2=CM•PM=3a2;
∴BM=3
a;
∴tan∠BCM=BMCM=33
;
∴∠BCM=30°;
∴∠OCB=∠OBC=∠BOC=60°;
∴BC
的长=60⋅π⋅23180=233
π.
21、略
【分析】(1)求出AB;BC的长即可解决问题;
(2)存在.先推出∠ACO=30°;∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,∠DCE=∠EDC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;
(3)①先表示出DN;BM,再判断出△BMD∽△DNE,即可得出结论;
②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解析】解:(1)∵四边形AOCB是矩形;
∴BC=OA=2,OC=AB=23
;∠BCO=∠BAO=90°;
∴B(23
;2).
故答案为(23
;2).
(2)存在.理由如下:
∵OA=2,OC=23
;
∵tan∠ACO=AOOC=33
;
∴∠ACO=30°;∠ACB=60°
①如图1中;当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC;
∴∠DCE=∠EDC=30°;
∴∠DBC=∠BCD=60°;
∴△DBC是等边三角形;
∴DC=BC=2;
在Rt△AOC中;∵∠ACO=30°,OA=2;
∴AC=2AO=4;
∴AD=AC﹣CD=4﹣2=2.
∴当AD=2时;△DEC是等腰三角形.
②如图2中;当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°;
∴∠ABD=∠ADB=75°;
∴AB=AD=23
;
综上所述,满足条件的AD的值为2或23
.
(3)①如图1;
过点D作MN⊥AB交AB于M;交OC于N;
∵A(0,2)和C(23
;0);
∴直线AC的解析式为y=−33
x+2;
设D(a,−33
a+2);
∴DN=−33
a+2,BM=23−
a
∵∠BDE=90°;
∴∠BDM+∠NDE=90°;∠BDM+∠DBM=90°;
∴∠DBM=∠E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024烧烤炉出租合同
- 2024智能城市照明控制系统承包合同
- 自动感应灯课程设计
- 2025版汽车制造业劳动合同及绿色制造责任协议3篇
- 2024版会员卡转让完整协议书
- 液压传动课程设计注射机
- 2024年职业技能认证培训服务合同书3篇
- 2024年版技术转让合同服务内容扩展
- 承德护理职业学院《汽车新技术》2023-2024学年第一学期期末试卷
- 成都银杏酒店管理学院《数值分析与算法》2023-2024学年第一学期期末试卷
- 东华医院信息平台解决方案-药房流程接口
- 通力电梯KCE电气系统学习指南
- 风电场岗位任职资格考试题库大全-下(填空题2-2)
- 九年级数学特长生选拔考试试题
- 幼儿园交通安全宣传课件PPT
- 门窗施工组织设计与方案
- 健身健美(课堂PPT)
- (完整版)财务管理学课后习题答案-人大版
- 锚索试验总结(共11页)
- 移动脚手架安全交底
- 人教版“课标”教材《统计与概率》教学内容、具体目标和要求
评论
0/150
提交评论