版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.4概率的加法公式
一、互斥事件、事件的并、对立事件1.互斥事件:不可能同时发生的两个事件叫做互斥事件(或称为互不相容事件);2.事件的并:由事件A和B至少有一个发生(即A发生,或B发生,或A、B都发生)所构成的事件C,称为事件A与B的并(或和)。记作C=A∪B(或C=A+B)。事件A∪B是由事件A或B所包含的基本事件所组成的集合。3.对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件。事件A的对立事件记作.例1.抛掷一颗骰子,观察掷出的点数.设事件A为“出现奇数点”,B为“出现2点”.已知P(A)=,P(B)=,求“出现奇数点或2点”的概率。这里的事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件
设事件C为““出现奇数点”或2点”,它也是一个随机事件。事件C与事件A、B的关系是:若事件A和事件B中至少有一个发生,则C发生;若C发生,则A,B中至少有一个发生,我们称事件C为A与B的并(或和)
设事件C为““出现奇数点”或2点”,它也是一个随机事件。事件C与事件A、B的关系是:若事件A和事件B中至少有一个发生,则C发生;若C发生,则A,B中至少有一个发生,我们称事件C为A与B的并(或和)如图中阴影部分所表示的就是A∪B.例2.判断下列各对事件是否是互斥事件,并说明理由。某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是男生;(4)至少有1名男生和全是女生。解:(1)是互斥事件;(2)不可能是互斥事件;(3)不可能是互斥事件;(4)是互斥事件;例3.判断下列给出的每对事件,(1)是否为互斥事件,(2)是否为对立事件,并说明理由。从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各4张)中,任取1张:(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”。解:(1)是互斥事件,不是对立事件;(2)既是互斥事件,又是对立事件;(3)不是互斥事件,当然不可能是对立事件;
所以对立事件一定是互斥事件,而互斥事件不一定是对立事件。
假定事件A与B互斥,则P(A∪B)=P(A)+P(B)。二、互斥事件的概率加法公式证明:假定A、B为互斥事件,在n次试验中,事件A出现的频数为n1,事件B出现的频数为n2,则事件A∪B出现的频数正好是n1+n2,所以事件A∪B的频率为
如果用μn(A)表示在n次试验中事件A出现的频率,则有μn(A∪B)=μn(A)+μn(B).
由概率的统计定义可知,P(A∪B)=P(A)+P(B)。一般地,如果事件A1,A2,…,An彼此互斥,那么P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An),即彼此互斥事件和的概率等于概率的和.
在求某些较为复杂事件的概率时,先将它分解为一些较为简单的、并且概率已知(或较容易求出)的彼此互斥的事件,然后利用概率的加法公式求出概率.因此互斥事件的概率加法公式具有“化整为零、化难为易”的功效,但需要注意的是使用该公式时必须检验是否满足它的前提条件“彼此互斥”.例1中事件C:“出现奇数点或2点”的概率是事件A:“出现奇数点”的概率与事件B:“出现2点”的概率之和,即P(C)=P(A)+P(B)=例4.在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,计算小明在数学考试中取得80分以上成绩的概率和小明考试及格的概率.解:分别记小明的成绩在90分以上,在80~89分,在70~79分,在60~69分为事件B,C,D,E,这四个事件是彼此互斥的.
根据概率的加法公式,小明的考试成绩在80分以上的概率是P(B∪C)=P(B)+P(C)=0.18+0.51=0.69.小明考试及格的概率为P(B∪C∪D∪E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.对立事件的概率若事件A的对立事件为A,则P(A)=1-P(A).证明:事件A与A是互斥事件,所以P(A∪A)=P(A)+P(A),又A∪A=Ω,
而由必然事件得到P(Ω)=1,
故P(A)=1-P(A).在上面的例题中,若令A=“小明考试及格”,则A=“小明考试不及格”如果求小明考试不及格的概率,则由公式得P(A)=1-P(A)=1-0.93=0.07.即小明考试不及格的概率是0.07.例5.某战士射击一次,问:(1)若事件A=“中靶”的概率为0.95,则A的概率为多少?(2)若事件B=“中靶环数大于5”的概率为0.7,那么事件C=“中靶环数小于6”的概率为多少?(3)事件D=“中靶环数大于0且小于6”的概率是多少?解:因为A与A互为对立事件,(1)P(A)=1-P(A)=0.05;(2)事件B与事件C也是互为对立事件,所以P(C)=1-P(B)=0.3;(3)事件D的概率应等于中靶环数小于6的概率减去未中靶的概率,即P(D)=P(C)-P(A)=0.3-0.05=0.25例6.盒内装有各色球12只,其中5红、4黑、2白、1绿,从中取1球,设事件A为“取出1只红球”,事件B为“取出1只黑球”,事件C为“取出1只白球”,事件D为“取出1只绿球”.已知P(A)=,P(B)=,P(C)=,P(D)=,求:(1)“取出1球为红或黑”的概率;(2)“取出1球为红或黑或白”的概率.解:(1)“取出红球或黑球”的概率为P(A∪B)=P(A)+P(B)=;(2)“取出红或黑或白球”的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=。又(2)A∪B∪C的对立事件为D,所以P(A∪B∪C)=1-P(D)=即为所求.例7.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4,(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去的?解:记“他乘火车去”为事件A,,“他乘轮船去”为事件B,“他乘汽车去”为事件C,“他乘飞机去”为事件D,这四个事件不可能同时发生,故它们彼此互斥,(1)故P(A∪C)=0.4;(2)设他不乘轮船去的概率为P,则P=1-P(B)=0.8;(3)由于0.5=0.1+0.4=0.2+0.3,故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去。练习题:1.每道选择题有4个选择项,其中只有1个选择项是正确的。某次考试共有12道选择题,某人说:“每题选择正确的概率是1/4,我每题都选择第一个选择项,则一定有3题选择结果正确”这句话()(A)正确(B)错误(C)不一定(D)无法解释B2.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数。在上述事件中,是对立事件的是()(A)①(B)②④(C)③(D)①③C3.甲、乙2人下棋,下成和棋的概率是,乙获胜的概率是,则甲不胜的概率是()
A.B.C.D.B4.从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”C5.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为()
A.至多两件次品
B.至多一件次品
C.至多两件正品
D.至少两件正品B6.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是()
A.0.62B.0.38C.0.02D.0.68C7.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为()
A.0.09B.0.98C.0.97D.0.96D8.某射手射击一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是
。0.29.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是
.两次都不中靶10.我国西部一个地区的年降水量在下列区间内的概率如下表所示:年降水量/mm[100,150)[150,200)[200,250)[250,300]概率0.210.160.130.12则年降水量在[200,300](mm)范围内的概率是______________.0.2511.某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率,(2)至少射中7环的概率;(3)射中环数不足8环的概率.0.520.870.29;
绝地求生辅助vfg80wiv了救仁家老夫人,你早就挨板子了。”没得我帮老妇人盖好被子,鼠头人又责骂道,“仁老夫人不用你瞎操心,待会儿就会有丫鬟来照料她,你做好你的本分就行。”听着鼠头人这么讲道,我也识趣的走了,但是我还是担心不知这傅家会怎么对待仁老夫人。我已经答应了仁玉要好好照顾仁老夫人,但是自己在这里又没什么权利,得想个办法才行啊。9初到傅府|接新娘一事已经完了,但我没有忘记我要粘着傅家过日子的目的。我赶紧向鼠头人身旁靠过去,恭敬地说道:“傅总管,那么现在我们是不是也该动身回傅家了?”鼠头人用眼角瞄了我一眼,轻蔑地说道:“这事用不着你提醒,赶紧把你们家的下人叫过来,好了我们就出发回去。”“那现在就可以走了,这仁家就我一个下人。”我应和道。“哟,就你一个下人啊?”鼠头人轻蔑中带着满满地嘲笑意味反问道,“那也难怪,这烂屋子穷主人请不起仆人也是正常的。”这话听的我真不爽,心想,起码这一屋子人都是能吃苦过活的好人,哪像你这只鼠头,仗势欺人,小心活命不长。也罢,我也就只有想
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江警官职业学院《品牌形象专项设计一》2023-2024学年第一学期期末试卷
- 中国民用航空飞行学院《现代交换技术》2023-2024学年第一学期期末试卷
- 郑州旅游职业学院《当代资本主义》2023-2024学年第一学期期末试卷
- 小学预算编制收支审批制度
- 浙江传媒学院《应用程序设计实验》2023-2024学年第一学期期末试卷
- 漳州城市职业学院《长跑》2023-2024学年第一学期期末试卷
- 深度学习在元数据分析中的探索
- 双十二品牌提升策略模板
- 专业基础-房地产经纪人《专业基础》点睛提分卷3
- 2024-2025学年江苏省无锡市江阴市八年级(上)期末数学试卷
- 广东省惠州市2024-2025学年高一上学期期末考试英语试题(含答案)
- 医院骨科2025年带教计划(2篇)
- 2024-2025学年北京市东城区高一上学期期末考试数学试卷(含答案)
- 环境保护应急管理制度执行细则
- 2024-2030年中国通航飞行服务站(FSS)行业发展模式规划分析报告
- 机械制造企业风险分级管控手册
- 地系梁工程施工方案
- 藏文基础-教你轻轻松松学藏语(西藏大学)知到智慧树章节答案
- 2024电子商务平台用户隐私保护协议3篇
- 安徽省芜湖市2023-2024学年高一上学期期末考试 英语 含答案
- 医学教程 常见体表肿瘤与肿块课件
评论
0/150
提交评论