云南经贸外事职业学院《设计综合表现》2023-2024学年第一学期期末试卷_第1页
云南经贸外事职业学院《设计综合表现》2023-2024学年第一学期期末试卷_第2页
云南经贸外事职业学院《设计综合表现》2023-2024学年第一学期期末试卷_第3页
云南经贸外事职业学院《设计综合表现》2023-2024学年第一学期期末试卷_第4页
云南经贸外事职业学院《设计综合表现》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页云南经贸外事职业学院

《设计综合表现》2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的图像检索任务中,需要根据用户提供的示例图像从大规模图像数据库中找到相似的图像。假设要构建一个高效的图像搜索引擎,能够快速准确地返回相关图像。以下哪种图像检索方法在处理大规模数据时性能更优?()A.基于内容的图像检索B.基于文本标注的图像检索C.基于哈希编码的图像检索D.基于深度学习特征的图像检索2、在计算机视觉中,特征提取是非常关键的一步。假设我们要对一组风景图像进行特征提取,以便后续的图像检索和分类任务。以下哪种特征提取方法能够捕捉到图像的全局和局部特征,并且对图像的旋转、缩放等变换具有较好的不变性?()A.尺度不变特征变换(SIFT)B.方向梯度直方图(HOG)C.局部二值模式(LBP)D.卷积神经网络自动学习的特征3、在计算机视觉中,图像分类是一项重要任务。假设我们要对大量的动物图片进行分类,将其分为猫、狗、鸟等类别。以下关于图像分类方法的描述,哪一项是不准确的?()A.基于深度学习的卷积神经网络(CNN)在图像分类任务中表现出色,能够自动学习图像的特征B.传统的机器学习方法如支持向量机(SVM)在处理大规模图像数据时,性能通常不如深度学习方法C.图像分类只需要考虑图像的颜色和形状等低层次特征,高层语义信息对分类结果影响不大D.为了提高分类准确率,可以使用数据增强技术,如旋转、翻转、裁剪等操作来扩充数据集4、计算机视觉在无人驾驶飞行器(UAV)中的应用可以辅助飞行和导航。假设一架UAV需要依靠视觉信息避开障碍物,以下关于UAV计算机视觉应用的描述,正确的是:()A.仅依靠单目视觉就能准确估计障碍物的距离和速度B.视觉信息在UAV飞行中的作用有限,主要依靠其他传感器如GPSC.多目视觉和深度学习算法的结合可以为UAV提供更准确的环境感知和障碍物避让能力D.UAV的飞行速度和姿态对视觉系统的性能没有影响5、计算机视觉在自动驾驶领域有重要应用。假设车辆需要根据摄像头采集的图像来识别道路上的交通标志,并且要在不同天气和光照条件下都能准确识别。以下哪种方法可能有助于提高交通标志识别的鲁棒性?()A.使用多个不同类型的摄像头获取图像B.仅依赖颜色特征进行识别C.采用简单的线性分类器进行标志分类D.减少训练数据中的交通标志种类6、计算机视觉在自动驾驶领域有广泛的应用。假设一辆自动驾驶汽车需要识别道路上的交通标志,以下关于自动驾驶中的计算机视觉应用的描述,哪一项是不正确的?()A.多摄像头融合可以提供更全面的道路信息,提高交通标志识别的准确性B.深度学习模型可以实时处理摄像头采集的图像,快速准确地识别交通标志C.除了交通标志识别,计算机视觉还可以用于车道检测、行人检测和障碍物检测等任务D.自动驾驶中的计算机视觉系统完全不需要其他传感器(如雷达、激光雷达)的辅助,仅依靠图像信息就能实现安全可靠的驾驶7、在计算机视觉的表情识别任务中,判断图像或视频中人物的表情。假设要开发一个用于在线教育的表情识别系统,以下关于表情识别方法的描述,哪一项是不正确的?()A.可以通过分析面部肌肉的运动和特征点的变化来识别表情B.深度学习模型能够学习不同表情的模式和特征,实现准确的表情分类C.表情识别系统需要考虑光照、头部姿态和遮挡等因素的影响D.表情识别可以准确地识别出所有细微和复杂的表情,不受个体差异和文化背景的影响8、计算机视觉在无人驾驶中的应用至关重要。假设要通过车载摄像头识别道路上的交通标志和标线,以下关于应对复杂环境变化的策略,哪一项是不正确的?()A.利用多模态数据融合,如结合摄像头和激光雷达的信息B.定期更新模型,适应新出现的交通标志和标线C.只依靠单一摄像头的图像信息,不考虑其他传感器D.对不同天气和光照条件下的数据进行增强训练9、计算机视觉中的场景理解是理解图像或视频中的场景内容和语义信息。假设要理解一张城市街道的图像,以下关于场景理解方法的描述,哪一项是不正确的?()A.可以通过对象检测、语义分割和场景分类等任务来实现场景理解B.结合上下文信息和先验知识能够提高场景理解的准确性C.深度学习模型能够学习场景中的全局特征和关系,实现对场景的深入理解D.场景理解可以在没有任何先验知识和上下文信息的情况下,准确地推断出场景的语义10、在计算机视觉的视频分析中,假设要对一段监控视频中的异常行为进行检测。以下关于特征提取的方法,哪一项是不太适合的?()A.提取每一帧图像的颜色、纹理等低级特征B.利用光流信息来捕捉物体的运动特征C.仅分析视频的音频信息,忽略图像内容D.结合时空特征,同时考虑空间和时间维度的信息11、在计算机视觉中,深度估计是确定场景中物体距离相机的距离。以下关于深度估计的说法,错误的是()A.可以通过立体视觉、结构光或飞行时间等技术来获取深度信息B.深度学习方法在单目深度估计中取得了显著进展C.深度估计对于三维重建、虚拟现实和增强现实等应用具有重要意义D.深度估计的结果总是非常精确,不需要进行后处理和优化12、假设要构建一个能够对书画作品进行真伪鉴定的计算机视觉系统,需要对作品的笔触、线条和风格等特征进行分析。以下哪种技术在书画鉴定中可能具有应用前景?()A.笔迹分析B.风格迁移C.图像风格分析D.以上都是13、在计算机视觉的图像检索任务中,需要根据用户提供的查询图像找到相似的图像。假设我们有一个大型的图像数据库,以下哪种图像表示方法能够提高图像检索的效率和准确性?()A.基于全局特征的图像表示B.基于局部特征的图像表示C.基于深度学习的图像嵌入表示D.基于颜色直方图的图像表示14、在医学图像分析中,计算机视觉技术有助于疾病的诊断和治疗。假设医生需要对一组肺部CT图像进行分析,以检测是否存在肿瘤。以下关于医学图像分析中的计算机视觉的描述,哪一项是不准确的?()A.计算机视觉算法可以自动检测和定位肺部肿瘤,提高诊断的效率和准确性B.能够对图像进行增强和预处理,突出病变区域,便于医生观察和判断C.由于医学图像的复杂性和个体差异,计算机视觉的结果总是完全准确无误的D.可以通过大量标注的医学图像数据进行训练,学习正常和异常的图像特征15、在图像去噪中,BM3D(Block-Matchingand3DFiltering)算法的优势在于()A.去噪效果好B.保持图像细节C.计算效率高D.以上都是16、计算机视觉中的动作识别是一个具有挑战性的任务。假设要识别一段体育比赛视频中的运动员动作,以下关于特征选择的方法,哪一项是不太可行的?()A.提取运动员的身体轮廓和关节位置作为特征B.仅使用视频的音频信息来判断运动员的动作C.计算视频帧之间的光流变化作为动作特征D.结合空间和时间维度的特征来描述动作17、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设一个工厂需要检测生产线上的零件是否存在缺陷。以下关于工业检测中的计算机视觉的描述,哪一项是不准确的?()A.能够快速准确地检测出零件的表面缺陷、尺寸偏差等问题B.可以通过机器视觉系统对零件进行自动分类和筛选C.工业检测中的计算机视觉系统需要高度的稳定性和可靠性,对环境变化不敏感D.计算机视觉在工业检测中的应用已经非常成熟,不需要人工干预和校验18、当进行图像的光流估计时,假设要计算图像中像素的运动速度和方向。以下哪种光流估计算法在复杂场景下可能更准确?()A.Horn-Schunck算法B.Lucas-Kanade算法C.随机估计光流D.不进行光流估计,忽略像素的运动信息19、在计算机视觉的图像配准任务中,需要将不同视角或时间拍摄的图像进行对齐。假设要将两张具有一定旋转和平移差异的图像进行配准,以下关于图像配准方法的描述,正确的是:()A.基于特征点匹配的图像配准方法对图像的变形和光照变化不敏感B.直接使用像素值的相似性度量就能实现准确的图像配准C.图像配准不需要考虑图像的分辨率和比例尺差异D.深度学习在图像配准中的应用还不成熟,不如传统方法有效20、在计算机视觉的视觉跟踪与定位任务中,实时跟踪物体并确定其在空间中的位置。假设要在一个室内环境中跟踪一个移动的机器人并确定其位置,以下关于视觉跟踪与定位方法的描述,正确的是:()A.基于标志物的跟踪与定位方法在标志物被遮挡时仍能准确工作B.视觉里程计方法能够独立实现高精度的长期跟踪与定位C.同时使用多个相机进行观测不能提高跟踪与定位的性能D.环境的光照变化和动态障碍物对视觉跟踪与定位的结果影响较小21、计算机视觉在工业检测中的应用可以提高生产效率和质量。假设要检测生产线上产品的表面缺陷,以下关于工业检测中的计算机视觉技术的描述,正确的是:()A.传统的机器视觉方法在检测复杂的表面缺陷时比深度学习方法更可靠B.深度学习模型需要大量的有缺陷和无缺陷样本进行训练,才能准确检测出各种缺陷C.工业检测中的计算机视觉系统不需要考虑实时性和准确性的平衡D.产品的颜色和材质对表面缺陷检测的结果没有影响22、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声,同时尽可能保留图像的细节和边缘信息。以下哪种去噪方法可能更适合?()A.中值滤波,用邻域中值代替像素值B.均值滤波,用邻域平均值代替像素值C.基于深度学习的图像去噪模型,如DnCNND.不进行任何去噪处理,保留原始噪声图像23、计算机视觉中的图像去雾是一个具有挑战性的问题。假设要去除一张有浓雾的风景图像中的雾气,以下哪种方法可能需要对大气散射模型有深入的了解?()A.基于深度学习的去雾方法B.基于物理模型的去雾方法C.基于图像增强的去雾方法D.基于滤波的去雾方法24、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和功能,例如判断是办公室还是客厅。以下哪种信息对于准确理解场景是至关重要的?()A.物体的类别和位置B.图像的颜色分布C.图像的拍摄角度D.随机选择图像中的部分区域进行分析25、计算机视觉是一门研究如何让计算机从图像或视频中获取信息和理解内容的学科。在计算机视觉的应用中,目标检测是一项重要任务。以下关于目标检测的描述,不准确的是()A.目标检测能够准确识别图像或视频中特定类别的物体,并确定其位置和大小B.深度学习技术的发展极大地提高了目标检测的准确性和效率C.目标检测只适用于静态图像,对于动态视频的处理效果不佳D.目标检测在自动驾驶、安防监控和工业检测等领域有着广泛的应用26、计算机视觉中的图像超分辨率重建旨在提高图像的分辨率。假设要将一张低分辨率的卫星图像重建为高分辨率图像,以下关于模型训练的挑战,哪一项是最为突出的?()A.缺乏足够的高分辨率卫星图像数据用于训练B.模型的训练时间过长,难以在短时间内得到结果C.难以评估重建后的图像质量,没有明确的标准D.计算资源需求过大,普通计算机难以承受27、在计算机视觉中,以下哪种技术常用于图像的超分辨率重建的上采样方法?()A.反卷积B.亚像素卷积C.最近邻插值D.以上都是28、计算机视觉中的显著性检测旨在找出图像中引人注目的区域。假设要在一张复杂的自然风景图像中检测显著性区域,以下关于显著性检测方法的描述,哪一项是不正确的?()A.基于对比度的方法通过计算图像区域与周围区域的差异来确定显著性B.基于频域分析的方法可以从图像的频谱中提取显著性信息C.深度学习方法能够学习图像的全局和局部特征,实现更准确的显著性检测D.显著性检测的结果总是与人类的视觉注意力机制完全一致,没有偏差29、计算机视觉中的图像超分辨率技术用于提高图像的分辨率。假设要将一张低分辨率的图像恢复成高分辨率图像,以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的图像超分辨率方法能够生成清晰逼真的高分辨率图像B.深度学习中的生成对抗网络(GAN)在图像超分辨率任务中无法发挥作用C.图像超分辨率的效果不受原始低分辨率图像的质量和内容的限制D.结合先验知识和深度学习的方法可以改善图像超分辨率的效果30、计算机视觉中的无人驾驶技术是一个综合性的应用领域。以下关于无人驾驶中的计算机视觉的说法,不正确的是()A.计算机视觉在无人驾驶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论