版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省舟山市市定海区第五高级中学2021年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在的二项展开式中,的系数为
(
)A.-40
B.-10
C.10
D.40参考答案:A2.设实数a使得不等式|2x?a|+|3x?2a|≥a2对任意实数x恒成立,则满足条件的a所组成的集合是
[
]A.
B.
C.
D.[?3,3]w
参考答案:解析:令,则有,排除B、D。由对称性排除C,从而只有A正确3.已知抛物线y2=4x的焦点为F,A、B,为抛物线上两点,若=3,O为坐标原点,则△AOB的面积为()A. B. C. D.参考答案:【考点】抛物线的简单性质.【分析】根据抛物线的定义,不难求出,|AB|=2|AE|,由抛物线的对称性,不妨设直线的斜率为正,所以直线AB的倾斜角为60°,可得直线AB的方程,与抛物线的方程联立,求出A,B的坐标,即可求出△AOB的面积.【解答】解:如图所示,根据抛物线的定义,不难求出,|AB|=2|AE|,由抛物线的对称性,不妨设直线的斜率为正,所以直线AB的倾斜角为60°,直线AB的方程为y=(x﹣1),联立直线AB与抛物线的方程可得A(3,2),B(,﹣),所以|AB|==,而原点到直线AB的距离为d=,所以S△AOB=,当直线AB的倾斜角为120°时,同理可求.故选B.4.若点P(1,1)为圆(x-3)2+y2=9的弦MN的中点,则弦MN所在直线方程为()A.2x+y-3=0
B.x-2y+1=0C.x+2y-3=0
D.2x-y-1=0参考答案:D5.在的展开中,的幂指数是整数的项共有(
)A、6项
B、5项
C、4项
D、3项
参考答案:B略6.在平行四边形ABCD中,AC为一条对角线,若,,则(
)
A.(-3,-5)
B.(-2,-4)
C.(3,5)
D.(2,4)参考答案:A7.已知,则的最小值是
A.
B.
C.
D.参考答案:B8.椭圆的焦点为F1和F2,点P在椭圆上,如果线段PF1中点在y轴上,那么|PF1|是|PF2|的
(
)A.7倍
B.5倍
C.4倍
D.3倍参考答案:A9.直线:3x-4y-9=0与圆:(为参数)的位置关系是()A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心参考答案:D【分析】把圆的参数方程改写成直角方程,利用圆心到直线的距离与半径的大小来判断它们的位置关系.【详解】圆的方程是,故圆心到直线的距离为,所以直线与圆是相交的.又,故直线不过圆心,故选D.【点睛】参数方程转化为普通方程,关键是消去参数,消参数的方法有:(1)加减消元法;(2)平方消元法;(3)反解消元法;(4)交轨法.10.设点,则“且”是“点在直线上”的(
)A.充分而不必要条件
B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.绝对值不等式的解集是:
.参考答案:略12.在内切圆圆心为M的△ABC中,,,,在平面ABC内,过点M作动直线l,现将△ABC沿动直线l翻折,使翻折后的点C在平面ABM上的射影E落在直线AB上,点C在直线l上的射影为F,则的最小值为______参考答案:画出图象如下图所示.由于,所以平面,所以三点共线.以分别为轴建立平面直角坐标系,则,设直线的方程为,则直线的方程为.令求得,而.联立解得.由点到直线的距离公式可计算得,所以.即最小值为.【点睛】本小题主要考查空间点线面的位置关系,考查线面垂直的证明,考查三点共线的证明,考查利用坐标法解决有关线段长度比值的问题,是一个综合性很强的题目.首先考虑折叠问题,折叠后根据线线垂直关系推出三点共线,将问题转化为平面问题来解决,设好坐标系后写出直线的方程即直线的方程,根据点到直线距离公式写出比值并求出最值.13.已知,则复数
▲
。参考答案:略14.已知程序框图,则输出的i=
.参考答案:9【考点】程序框图.【分析】执行程序框图,写出每次循环得到的S,i的值,当满足S≥100时,退出执行循环体,输出i的值为9.【解答】解:S=1,i=3不满足S≥100,执行循环体,S=3,i=5不满足S≥100,执行循环体,S=15,i=7不满足S≥100,执行循环体,S=105,i=9满足S≥100,退出执行循环体,输出i的值为9.故答案为:9.【点评】本题考察程序框图和算法,属于基础题.15.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入
参考答案:
或16.不等式的解集是______.参考答案:【分析】将原不等式右边变为0,然后通分后利用分式不等式的解法求解即可。【详解】,,通分得:,即,,解得:或故答案为【点睛】本题考查分式不等式的解法,考查学生转化的思想,属于基础题17.观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5…照此规律,第n个等式可为.参考答案:(n+1)(n+2)(n+3)…(n+n)=2n?1?3?5…?(2n﹣1)【考点】归纳推理.【专题】压轴题;阅读型.【分析】通过观察给出的前三个等式的项数,开始值和结束值,即可归纳得到第n个等式.【解答】解:题目中给出的前三个等式的特点是第一个等式的左边仅含一项,第二个等式的左边含有两项相乘,第三个等式的左边含有三项相乘,由此归纳第n个等式的左边含有n项相乘,由括号内数的特点归纳第n个等式的左边应为:(n+1)(n+2)(n+3)…(n+n),每个等式的右边都是2的几次幂乘以从1开始几个相邻奇数乘积的形式,且2的指数与奇数的个数等于左边的括号数,由此可知第n个等式的右边为2n?1?3?5…(2n﹣1).所以第n个等式可为(n+1)(n+2)(n+3)…(n+n)=2n?1?3?5…(2n﹣1).故答案为(n+1)(n+2)(n+3)…(n+n)=2n?1?3?5…(2n﹣1).【点评】本题考查了归纳推理,归纳推理是根据已有的事实,通过观察、联想、对比,再进行归纳,类比,然后提出猜想的推理,是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设椭圆E:的离心率,右焦点到直线的距离,O为坐标原点.(1)求椭圆E的方程;(2)过点O作两条互相垂直的射线,与椭圆E分别交于A,B两点,求点O到直线AB的距离.参考答案:若过A,B两点斜率不存在时,检验满足.整理得7m2=12(k2+1).点O到直线AB的距离.………………12分考点:求椭圆的方程及直线和椭圆的综合问题.19.(本题满分12分)已知函数(,实数,为常数).(1)若,求函数的极值;(2)若,讨论函数的单调性.参考答案:解:(1)函数,则,令,得(舍去),.
当时,,函数单调递减;
当时,,函数单调递增;
∴在处取得极小值.
……………5分(2)由于,则,从而,则
令,得,.
当,即时,函数的单调递减区间为,单调递增区间为;
………………8分①
当,即时,列表如下:100极大极小所以,函数的单调递增区间为,,单调递减区间为;当,即时,函数的单调递增区间为;②
当,即时,列表如下:100极大极小所以函数的单调递增区间为,,单调递减区间为;综上:当,即时,函数的单调递减区间为,单调递增区间为;当,即时,函数的单调递增区间为,,单调递减区间为;当,即时,函数的单调递增区间为;当,即时,函数的单调递增区间为,,单调递减区间为.
……………1420.设函数.
(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围.
参考答案:解:(1),……………2分
因为,,
即恒成立,…………4分
所以,得,
即的最大值为…………6分
(2)
因为当时,;当时,;
当时,;………………8分
所以当时,取极大值;
当时,取极小值;…10分
故当或时,方程仅有一个实根.
解得或.……………14分略21.已知A,B,C为△ABC的三内角,且其对边分别为a,b,c,若m=,n=,且m·n=.(1)求角A的大小;(2)若b+c=4,△ABC的面积为,求a的值.参考答案:(1)由m·n=得-2cos2+1=?cosA=-,所以A=120°.(2)由S△ABC=bcsinA=bcsin120°=,得bc=4,故a2=b2+c2-2bccosA=b2+c2+bc=(b+c)2-bc=12,所以a=2.22.(本小题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江安防职业技术学院《中学语文课程教学论》2023-2024学年第一学期期末试卷
- 数独答案生成器-20220303010135
- 数字教学实践报告
- 经典搞笑语录集锦
- 部编版2024-2025学年六年级上语文寒假作业(七)(有答案)
- 浙江省杭州市拱墅区源清中学2024-2025学年高一(上)期中物理试卷(含答案)
- 2025届吉林省前郭尔罗斯蒙古族自治县第五高级中学高三上学期第五次考试历史试题(纲要上下 选择性必修三册)(含答案解析)
- 《色达佛学院全景》课件
- 伊春职业学院《台词与表演》2023-2024学年第一学期期末试卷
- 二零二五年度城市综合体土石方运输及配套设施合同3篇
- ppr管件注塑工艺
- 职业技能鉴定要素细目表和卷库编写要求
- 公司设备转让合同协议书
- 2023年全国统一建筑工程预算工程量计算规则完整版
- 教科版四年级科学下册第三单元岩石与土壤4.制作岩石和矿物标本(教学设计)教案
- 大学《工程力学》期末考试试题库含详细答案
- 2022年湖北省武汉市中考数学试卷含解析
- TLFSA 003-2020 危害分析与关键控制点(HACCP)体系调味面制品生产企业要求
- LY/T 2244.3-2014自然保护区保护成效评估技术导则第3部分:景观保护
- 纪律教育月批评与自我批评五篇
- GB/T 26480-2011阀门的检验和试验
评论
0/150
提交评论