2024年沪教新版高三数学下册阶段测试试卷_第1页
2024年沪教新版高三数学下册阶段测试试卷_第2页
2024年沪教新版高三数学下册阶段测试试卷_第3页
2024年沪教新版高三数学下册阶段测试试卷_第4页
2024年沪教新版高三数学下册阶段测试试卷_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年沪教新版高三数学下册阶段测试试卷299考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共9题,共18分)1、不等式组的解集为()A.(-∞,-2]∪[3,4)B.(-∞,-2]∪(4,+∞)C.(4,+∞)D.(-∞,-2]∪(4,+∞)2、不等式|x-4|+|3-x|<a总有解时,a的取值范围是()A.a>1B.C.0<a≤1D.3、若角α的终边落在直线x-y=0上,则的值等于()A.2B.-2C.-2或2D.04、如图,一个矩形的长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约为()A.B.C.D.5、函数y=(n∈N*,n>9)的图象可能是()A.B.C.D.6、已知则的大小关系是()A.B.C.D.7、已知一组观测值具有线性相关关系,若对求得b=0.5,=5.4,=6.2;则线性回归方程为()

A.=0.5x+3.5

B..=0.5x+8.9

C..=3.5x+0.5

D..=8.9x+3.5

8、已知函数的部分图象如图所示,则下列结论错误的是()

A.B.函数f(x)在上单调递增C.函数f(x)的一条对称轴是D.为了得到函数f(x)的图象,只需将函数y=2cosx的图象向右平移个单位9、已知定义在R

上的奇函数f(x)

满足f(x鈭�4)=鈭�f(x)

且在区间[0,2]

上是增函数,则(

)

A.f(鈭�25)<f(80)<f(11)

B.f(80)<f(11)<f(鈭�25)

C.f(11)<f(80)<f(鈭�25)

D.f(鈭�25)<f(11)<f(80)

评卷人得分二、填空题(共8题,共16分)10、过抛物线y2=8x的焦点F作倾斜角为135°的直线交抛物线于A、B两点,则弦长AB的长为____.11、已知二次函数的图象与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a____(a≠0)12、函数y=2sin(2x-)(x∈[0,π])的单调减区间是____.13、sin510°=____.14、满足条件的x的集合为____.15、若实数x,y满足不等式组则3x+2y的最大值是____.16、命题“?x>0x2鈭�ax+1>0

”是真命题,则实数a

的取值范围是______.17、已知四边形ABCDAC

是BD

的垂直平分线,垂足为EO

为四边形ABCD

外一点,设|OB鈫�|=5|OD鈫�|=3

则((OA鈫�+OC鈫�).(OB鈫�鈭�OD鈫�))=

________.

评卷人得分三、判断题(共6题,共12分)18、函数y=sinx,x∈[0,2π]是奇函数.____(判断对错)19、判断集合A是否为集合B的子集;若是打“√”,若不是打“×”.

(1)A={1,3,5},B={1,2,3,4,5,6}.____;

(2)A={1,3,5},B={1,3,6,9}.____;

(3)A={0},B={x|x2+1=0}.____;

(4)A={a,b,c,d},B={d,b,c,a}.____.20、函数y=sinx,x∈[0,2π]是奇函数.____(判断对错)21、已知函数f(x)=4+ax-1的图象恒过定点p,则点p的坐标是(1,5)____.(判断对错)22、已知A={x|x=3k-2,k∈Z},则5∈A.____.23、任一集合必有两个或两个以上子集.____.评卷人得分四、计算题(共2题,共4分)24、甲;乙;丙3个盒中分别装有大小相等,形状相同的卡片若干张,甲盒中装有2张卡片,分别写有字母A和B;乙盒中装有3张卡片,分别写有字母C,D和E;丙盒中装有2张卡片,分别写有字母H和I,现要从3个盒中各随机取出1张卡片.求:(1)取出的3张卡片中恰好有1张、2张、3张写有元音字母的概率各是多少;

(2)取出的3张卡片上全是辅音字母的概率.25、甲、乙两人玩数学游戏,先由甲心中任想一个数字记为a,再由乙猜甲刚才想的数学,把乙猜的数字记为b,且a,b∈{3,4.5,6},若|a-b|≤1,则称甲乙“心有灵犀”,现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为____.评卷人得分五、证明题(共1题,共6分)26、如图所示;三棱锥S-ABC中,SA⊥AC,AC⊥BC,M为SB的中点,D为AB的中点,且△AMB为正三角形.

(1)求证:DM∥平面SAC;

(2)求证:平面SBC⊥平面SAC;

(3)若BC=4,SB=20,求三棱锥D-MBC的体积.评卷人得分六、简答题(共1题,共9分)27、如图,在直角梯形ABCD中,AD//BC,当E、F分别在线段AD、BC上,且AD=4,CB=6,AE=2,现将梯形ABCD沿EF折叠,使平面ABFE与平面EFCD垂直。1.判断直线AD与BC是否共面,并证明你的结论;2.当直线AC与平面EFCD所成角为多少时,二面角A—DC—E的大小是60°。参考答案一、选择题(共9题,共18分)1、C【分析】【分析】不等式组即,即,由此解得不等式组的解集.【解析】【解答】解:不等式组;

即;

即;

解得x>4;

故选:C.2、A【分析】【分析】不等式总有解,只需a大于|x-4|+|3-x|的最小值即可,利用绝对值三角不等式可求它的最小值.【解析】【解答】解:∵|x-4|+|3-x|=|x-3|+|x-4|≥|(x-3)-(x-4)|=1;

∴(|x-3|+|x-4|)min=1

当a≤1时;|x-3|+|x-4|<a的解集为∅;

∴a>1时不等式|x-4|+|3-x|<a总有解.

故选:A.3、C【分析】【分析】根据三角函数的定义,可得sinα=cosα=或sinα=cosα=-.将此三角函数值代入题中的式子,化简整理即可得到原式的值为2或-2.【解析】【解答】解:∵角α的终边落在直线x-y=0上;

∴sinα=cosα=或sinα=cosα=-

①当sinα=cosα=时;

==1+1=2;

②当sinα=cosα=-时;

==-2

综上所述;原式的值为2或-2

故选:C4、A【分析】【分析】由已知中矩形的长为5,宽为2,我们易计算出矩形的面积,根据随机模拟实验的概念,我们易得阴影部分的面积与矩形面积的比例约为黄豆落在阴影区域中的频率,由此我们构造关于S阴影的方程,解方程即可求出阴影部分面积.【解析】【解答】解:∵矩形的长为5,宽为2,则S矩形=10

∴==;

∴S阴=;

答案:A.5、C【分析】【分析】先判定函数的奇偶性,利用排除法去掉A,B,然后<1再做判定.【解析】【解答】解:∵f(-x)=f(x)

∴函数为偶函数。

∴排除A;B

∵<1

∴应选C.6、B【分析】因为那么利用指数函数的性质可知选B【解析】【答案】B7、A【分析】

∵b=0.5,=5.4,=6.2;

∴a=6.2-0.5×5.4=3.5

∴线性回归方程为=0.5x+3.5

故选A.

【解析】【答案】将题中数据;代入求出a的值,即可求得线性回归方程.

8、D【分析】【分析】求出函数的解析式,利用三角函数图象性质、图象变换,即可得出结论.【解析】【解答】解:由题意,=;∴ω=1;

(,2)代入f(x)=2sin(x+φ),可得φ=-;

∴f(x)=2sin(x-);

∴A正确;

由于函数单调递增,2kπ-≤x-≤2kπ+,可得函数f(x)在上单调递增;B正确;

x=时,f(x)=2,即函数f(x)的一条对称轴是;C正确;

f(x)=2cos(x-),为了得到函数f(x)的图象,只需将函数y=2cosx的图象向右平移个单位;D不正确.

故选D.9、A【分析】解:隆脽f(x鈭�4)=鈭�f(x)

隆脿f(x鈭�8)=鈭�f(x鈭�4)=f(x)

即函数的周期是8

则f(11)=f(3)=鈭�f(3鈭�4)=鈭�f(鈭�1)=f(1)

f(80)=f(0)

f(鈭�25)=f(鈭�1)

隆脽f(x)

是奇函数;且在区间[0,2]

上是增函数;

隆脿f(x)

在区间[鈭�2,2]

上是增函数;

隆脿f(鈭�1)<f(0)<f(1)

即f(鈭�25)<f(80)<f(11)

故选:A

根据函数奇偶性和单调性之间的关系进行转化求解即可.

本题主要考查函数值的大小比较,根据函数的奇偶性和单调性之间的关系进行转化是解决本题的关键.【解析】A

二、填空题(共8题,共16分)10、略

【分析】【分析】求得抛物线的焦点,设出直线AB的方程,代入抛物线的方程,运用韦达定理和抛物线的定义,即可得到所求值.【解析】【解答】解:抛物线y2=8x的焦点F为(2;0);

设直线AB的方程为y-0=-(x-2);

即为y=2-x;代入抛物线的方程,可得。

x2-12x+4=0;

设A(x1,y1),B(x2,y2),则x1+x2=12;

由抛物线的定义可得;

|AB|=x1+x2+p=12+4=16.

故答案为:16.11、略

【分析】【分析】由题意,利用两点式即可设出函数的解析式.【解析】【解答】解:由题意;可得y=a(x+1)(x-2);

故答案为:(x+1)(x-2),12、略

【分析】【分析】令2kπ+≤2x-≤2kπ+,k∈z,求得x的范围,可得函数的单调减区间.【解析】【解答】解:函数y=2sin(2x-),令2kπ+≤2x-≤2kπ+;k∈z;

求得kπ+≤x≤kπ+,故函数的减区间为[kπ+,kπ+];k∈z.

再结合x∈[0,π],可得函数的减区间为[,];

故答案为:[,].13、略

【分析】【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【解析】【解答】解:sin510°=sin(360°+150°)=sin150°=sin(180°-30°)=sin30°=.

故答案为:14、【分析】【分析】根据正弦函数的图象和性质,可得1-2sinx>0时,2kπ-<x<2kπ+,(k∈Z);由余弦函数的图象和性质,可得cosx≥-时,2kπ-≤x≤2kπ+,(k∈Z),求出两个范围的交集可得答案.【解析】【解答】解:若1-2sinx>0

则sinx<

则2kπ-<x<2kπ+;(k∈Z)①

若cosx≥-

则2kπ-≤x≤2kπ+;(k∈Z)②

由①②得:2kπ-≤x<2kπ+;(k∈Z)

故原不等式的解集为:

故答案为:15、略

【分析】

如图即为满足不等式组的可行域;

由图易得:当x=3;y=0时。

3x+2y有最大值9.

故答案为9

【解析】【答案】先由约束条件画出可行域;再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.

16、略

【分析】解:因为命题“?x隆脢Rx2+ax+1>0

”是真命题;

所以不等式x2+ax+1>0

在x隆脢R

上恒成立.

由函数y=x2+ax+1

的图象是一条开口向上的抛物线可知;

判别式鈻�<0

即a2鈭�4<0?鈭�2<a<2

所以实数a

的取值范围是(鈭�2,2)

故答案为:(鈭�2,2)

此题实质上是二次不等式的恒成立问题;因为x隆脢R

函数y=x2+ax+1

的图象抛物线开口向上,所以只要判别式不大于0

即可.

本题主要考查全称命题或存在性命题的真假及应用,解题要注意x

的范围,如果x?R

一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出a

的范围.

本题是一道基础题.【解析】(鈭�2,2)

17、略

【分析】【分析】本题考查垂直平分线的概念,向量垂直的充要条件,向量加法的几何意义,相反向量的概念,以及向量减法的几何意义,向量数量积的运算.

根据条件,AC

垂直平分线段BD

从而得出EA鈫�鈰�DB鈫�=EC鈫�鈰�DB鈫�=0DE鈫�+BE鈫�=0鈫�

而OA鈫�=OB鈫�+BE鈫�+EA鈫�OC鈫�=OD鈫�+DE鈫�+EC鈫�

且OB鈫�鈭�OD鈫�=DB鈫�

代入(OA鈫�+OC鈫�)鈰�(OB鈫�鈭�OD鈫�)

进行向量加法和数量积的运算便可求出答案.【解答】解:隆脽AC

是BD

的垂直平分线;

隆脿EA鈫�鈰�DB鈫�=EC鈫�鈰�DB鈫�=0DE鈫�+BE鈫�=0鈫�

隆脿(OA鈫�+OC鈫�)鈰�(OB鈫�鈭�OD鈫�)

=(OB鈫�+BE鈫�+EA鈫�+OD鈫�+DE鈫�+EC鈫�)鈰�DB鈫�

=(OB鈫�+OD鈫�)鈰�(OB鈫�鈭�OD鈫�)+(EA鈫�+EC鈫�)鈰�DB鈫�

=OB鈫�2鈭�OD鈫�2

=25鈭�9

=16

故答案为16

.【解析】16

三、判断题(共6题,共12分)18、×【分析】【分析】根据奇函数的定义进行判断即可得到答案.【解析】【解答】解:∵x∈[0;2π],定义域不关于原点对称;

故函数y=sinx不是奇函数;

故答案为:×19、√【分析】【分析】根据子集的概念,判断A的所有元素是否为B的元素,是便说明A是B的子集,否则A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;

(2)5∈A;而5∉B,∴A不是B的子集;

(3)B=∅;∴A不是B的子集;

(4)A;B两集合的元素相同,A=B,∴A是B的子集.

故答案为:√,×,×,√.20、×【分析】【分析】根据奇函数的定义进行判断即可得到答案.【解析】【解答】解:∵x∈[0;2π],定义域不关于原点对称;

故函数y=sinx不是奇函数;

故答案为:×21、√【分析】【分析】已知函数f(x)=ax-1+4,根据指数函数的性质,求出其过的定点.【解析】【解答】解:∵函数f(x)=ax-1+4;其中a>0,a≠1;

令x-1=0,可得x=1,ax-1=1;

∴f(x)=1+4=5;

∴点P的坐标为(1;5);

故答案为:√22、×【分析】【分析】判断5与集合A的关系即可.【解析】【解答】解:由3k-2=5得,3k=7,解得k=;

所以5∉Z;所以5∈A错误.

故答案为:×23、×【分析】【分析】特殊集合∅只有一个子集,故任一集合必有两个或两个以上子集错误.【解析】【解答】解:∅表示不含任何元素;∅只有本身一个子集,故错误.

故答案为:×.四、计算题(共2题,共4分)24、略

【分析】【分析】(1)作出树形图;由树形图,得所有可能出现的结果有12个,利用列举法能求出取出的3张卡片中恰好有1张;2张、3张写有元音字母的概率各是多少.

(2)满足全是辅音字母的结果有2个,由此能求出取出的3张卡片上全是辅音字母的概率.【解析】【解答】解:(1)作出树形图;如下:

由树形图;得所有可能出现的结果有12个,它们出现的可能性相等;

其中满足只有一个元音字母的结果有5个;

∴取出的3张卡片中恰好有1张写有元音字母的概率p1=;

其中满足只有两个元音字母的结果有4个;

∴取出的3张卡片中恰好有2张写有元音字母的概率p2=;

其中满足三个元音字母的结果有1个;

∴取出的3张卡片中都写有元音字母的概率p3=.

(2)满足全是辅音字母的结果有2个;

则取出的3张卡片上全是辅音字母的概率p=.25、略

【分析】【分析】本题是一个古典概型,试验发生包含的事件是两个人分别从4个数字中各选一个数字,共有4×4种结果,满足条件的事件是|a-b|≤1,可以列举出所有的满足条件的事件,根据古典概型概率公式得到结果.【解析】【解答】解:由题意知本题是一个古典概型;

试验发生包含的事件是两个人分别从4个数字中各选一个数字;共有4×4=16种结果;

满足条件的事件是|a-b|≤1;可以列举出所有的满足条件的事件;

当a=3时,b=3;4;

当a=4时,b=3;4,5;

当a=5时,b=4;5,6;

当a=6时,b=5;6;

总上可知共有2+3+3+2=10种结果;

∴他们“心有灵犀”的概率为=.

故答案为:.五、证明题(共1题,共6分)26、略

【分析】【分析】(1)由已知易求MD∥SA;由SA⊂面SAC,MD⊄面SAC,即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论