版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽等省全国名校2025届高三冲刺模拟数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,则是的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件2.已知向量,则向量在向量方向上的投影为()A. B. C. D.3.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A. B.1 C. D.4.函数图像可能是()A. B. C. D.5.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}6.已知数列为等差数列,且,则的值为()A. B. C. D.7.已知向量,,则与共线的单位向量为()A. B.C.或 D.或8.在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知平面向量满足与的夹角为,且,则实数的值为()A. B. C. D.10.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.11.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若关于的不等式有正整数解,则实数的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知x,y>0,且,则x+y的最小值为_____.14.已知数列满足:点在直线上,若使、、构成等比数列,则______15.已知函数,则曲线在点处的切线方程为___________.16.已知,,分别为内角,,的对边,,,,则的面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.18.(12分)已知函数(,),.(Ⅰ)讨论的单调性;(Ⅱ)若对任意的,恒成立,求实数的取值范围.19.(12分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.20.(12分)设函数.(1)时,求的单调区间;(2)当时,设的最小值为,若恒成立,求实数t的取值范围.21.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.22.(10分)已知函数(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围;(Ⅲ)若数列的前项和,,求证:数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
向量,,,则,即,或者-1,判断出即可.【详解】解:向量,,,则,即,或者-1,所以是或者的充分不必要条件,故选:A.【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.2、A【解析】
投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.3、D【解析】
建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.4、D【解析】
先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.5、B【解析】
按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.6、B【解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.7、D【解析】
根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.【详解】因为,,则,所以,设与共线的单位向量为,则,解得或所以与共线的单位向量为或.故选:D.【点睛】本题考查向量的坐标运算以及共线定理和单位向量的定义.8、D【解析】
将复数化简得,,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.9、D【解析】
由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.10、C【解析】
因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.11、D【解析】
先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.【详解】解:由,得,所以,其在复平面内对应的点为,在第四象限故选:D【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.12、A【解析】
根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.【详解】因为不等式有正整数解,所以,于是转化为,显然不是不等式的解,当时,,所以可变形为.令,则,∴函数在上单调递增,在上单调递减,而,所以当时,,故,解得.故选:A.【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
处理变形x+y=x()+y结合均值不等式求解最值.【详解】x,y>0,且,则x+y=x()+y1,当且仅当时取等号,此时x=4,y=2,取得最小值1.故答案为:1【点睛】此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立的条件.14、13【解析】
根据点在直线上可求得,由等比中项的定义可构造方程求得结果.【详解】在上,,成等比数列,,即,解得:.故答案为:.【点睛】本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.15、【解析】
根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】因为,所以,又故切线方程为,整理为,故答案为:【点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.16、【解析】
根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面积.故答案为:.【点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】
(1)由恒成立,可得恒成立,进而构造函数,求导可判断出的单调性,进而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,则,,进而可得,即曲线的方程为,进而只需证明对任意,方程有唯一解,然后构造函数,分、和三种情况,分别证明函数在上有唯一的零点,即可证明结论成立.【详解】(1)由题意,可知,由恒成立,可得恒成立.令,则.令,则,,,在上单调递增,又,时,;时,,即时,;时,,时,单调递减;时,单调递增,时,取最小值,.(2)证明:由,令,由,结合二次函数性质可知,存在唯一的,使得,故存在唯一的极值点,则,,,曲线的方程为.故只需证明对任意,方程有唯一解.令,则,①当时,恒成立,在上单调递增.,,,存在满足时,使得.又单调递增,所以为唯一解.②当时,二次函数,满足,则恒成立,在上单调递增.,,存在使得,又在上单调递增,为唯一解.③当时,二次函数,满足,此时有两个不同的解,不妨设,,,列表如下:00↗极大值↘极小值↗由表可知,当时,的极大值为.,,,,,..下面来证明,构造函数,则,当时,,此时单调递增,,时,,,故成立.,存在,使得.又在单调递增,为唯一解.所以,对任意,方程有唯一解,即过原点任意的直线与曲线有且仅有一个公共点.【点睛】本题考查利用导数研究函数单调性的应用,考查不等式恒成立问题,考查利用单调性研究图象交点问题,考查学生的计算求解能力与推理论证能力,属于难题.18、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)求导得到,讨论和两种情况,得到答案.(Ⅱ)变换得到,设,求,令,故在单调递增,存在使得,,计算得到答案.【详解】(Ⅰ)(),当时,在单调递减,在单调递增;当时,在单调递增,在单调递减.(Ⅱ)(),即,().令(),则,令,,故在单调递增,注意到,,于是存在使得,可知在单调递增,在单调递减.∴.综上知,.【点睛】本题考查了函数的单调性,恒成立问题,意在考查学生对于导数知识的综合应用能力.19、(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接计算即可;(2)利用错位相减法计算;(3),令可得,,讨论即可.【详解】(1)设数列的公差为,数列的公比为,因为,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由(1)可得,,所以.因为是数列或中的一项,所以,所以,因为,所以,又,则或.当时,有,即,令.则.当时,;当时,,即.由,知无整数解.当时,有,即存在使得是数列中的第2项,故存在正整数,使得是数列中的项.【点睛】本题考查数列的综合应用,涉及到等差、等比数列的通项,错位相减法求数列的前n项和,数列中的存在性问题,是一道较为综合的题.20、(1)的增区间为,减区间为;(2).【解析】
(1)求出函数的导数,由于参数的范围对导数的符号有影响,对参数分类,再研究函数的单调区间;(2)由(1)的结论,求出的表达式,由于恒成立,故求出的最大值,即得实数的取值范围的左端点.【详解】解:(1)解:,当时,,解得的增区间为,解得的减区间为.(2)解:若,由得,由得,所以函数的减区间为,增区间为;,因为,所以,,令,则恒成立,由于,当时,,故函数在上是减函数,所以成立;当时,若则,故函数在上是增函数,即对时,,与题意不符;综上,为所求.【点睛】本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的单调区间,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由题意可得,,,解得即可求出椭圆的C的方程;(Ⅱ)由已知设直线l的方程为y=k(x-2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,解得.由方程组消去y,解得,由,得到,转化为关于k的不等式,求得k的范围.【详解】(Ⅰ)因为过焦点且垂直于长轴的直线被椭圆截得的线段长为3,所以,因为椭圆离心率为,所以,又,解得,,,所以椭圆的方程为;(Ⅱ)设直线的斜率为,则,设,由得,解得,或,由题意得,从而,由(Ⅰ)知,,设,所以,,因为,所以,所以,解得,所以直线的方程为,设,由消去,解得,在中,,即,所以,即,解得,或.所以直线的斜率的取值范围为.【点睛】本题考查在直线与椭圆的位置关系中由已知条件求直线的斜率取值范围问题,还考查了由离心率求椭圆的标准方程,属于难题.22、(Ⅰ);(Ⅱ);(Ⅲ)证明见解析.【解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:(Ⅰ)因为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《肺特殊CT征象》课件
- 《电能计量技术》课件
- 《家具的加工工艺》课件
- 第19课 七七事变与全民族抗战(解析版)
- 《卫生经济管理系统》课件
- 寒假自习课 25春初中道德与法治八年级下册教学课件 第一单元 大单元整体设计
- 银行宣传推广总结
- 《皮肤生理学》课件
- 素描艺术探索
- 风险监测与追踪培训
- 环卫清扫保洁、垃圾清运及绿化服务投标方案(技术标 )
- 13-4管道(设备)冲洗消毒试验记录
- 农田临水临电施工方案范本
- 千字文毛笔楷书描红字帖-米字格A4版
- 重金属矿山生态治理与环境修复技术进展
- HR主题分享9-绘制学习地图
- 成长需要挫折演讲稿(20篇)
- 职工学历教育补贴申请书
- GB/T 42915-2023铜精矿及主要含铜物料鉴别规范
- 高三英语二轮复习读后续写之弹钢琴的妈妈讲义
- s7et200mp自动化系统手册
评论
0/150
提交评论