贵州省毕节市重点中学2025届高三下学期联考数学试题含解析_第1页
贵州省毕节市重点中学2025届高三下学期联考数学试题含解析_第2页
贵州省毕节市重点中学2025届高三下学期联考数学试题含解析_第3页
贵州省毕节市重点中学2025届高三下学期联考数学试题含解析_第4页
贵州省毕节市重点中学2025届高三下学期联考数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省毕节市重点中学2025届高三下学期联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A. B. C. D.2.已知复数满足,则的值为()A. B. C. D.23.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A. B. C. D.4.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()A. B. C. D.5.年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B. C. D.6.已知数列满足,则()A. B. C. D.7.已知平面,,直线满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件8.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A. B.C. D.9.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间10.要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是()A. B. C. D.11.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.1912.等比数列若则()A.±6 B.6 C.-6 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的各项均为正数,记为的前n项和,若,,则________.14.记数列的前项和为,已知,且.若,则实数的取值范围为________.15.不等式对于定义域内的任意恒成立,则的取值范围为__________.16.不等式的解集为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中点.(1)证明:平面(2)若,求二面角的余弦值.18.(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.19.(12分)已知点到抛物线C:y1=1px准线的距离为1.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值.20.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.21.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.22.(10分)在中,角的对边分别为,且满足.(Ⅰ)求角的大小;(Ⅱ)若的面积为,,求和的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.

∵当x≥1时,为减函数,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故选C2、C【解析】

由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.3、B【解析】

因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.4、D【解析】

做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.【详解】作出函数的图象如图所示,由图可知方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.5、B【解析】

甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.6、C【解析】

利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.7、A【解析】

,是相交平面,直线平面,则“”“”,反之,直线满足,则或//或平面,即可判断出结论.【详解】解:已知直线平面,则“”“”,反之,直线满足,则或//或平面,“”是“”的充分不必要条件.故选:A.【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.8、A【解析】

求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.9、D【解析】

可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题10、C【解析】

根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案.【详解】根据题意,分两种情况进行讨论:①语文和数学都安排在上午,要求节语文课必须相邻且节数学课也必须相邻,将节语文课和节数学课分别捆绑,然后在剩余节课中选节到上午,由于节英语课不加以区分,此时,排法种数为种;②语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但节语文课不加以区分,节数学课不加以区分,节英语课也不加以区分,此时,排法种数为种.综上所述,共有种不同的排法.故选:C.【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题.11、B【解析】

计算,故,解得答案.【详解】当时,,即,且.故,,故.故选:.【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.12、B【解析】

根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、127【解析】

已知条件化简可化为,等式两边同时除以,则有,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【详解】由..故答案为:.【点睛】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,难度较易.14、【解析】

根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【点睛】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.15、【解析】

根据题意,分离参数,转化为只对于内的任意恒成立,令,则只需在定义域内即可,利用放缩法,得出,化简后得出,即可得出的取值范围.【详解】解:已知对于定义域内的任意恒成立,即对于内的任意恒成立,令,则只需在定义域内即可,,,当时取等号,由可知,,当时取等号,,当有解时,令,则,在上单调递增,又,,使得,,则,所以的取值范围为.故答案为:.【点睛】本题考查利用导数研究函数单调性和最值,解决恒成立问题求参数值,涉及分离参数法和放缩法,考查转化能力和计算能力.16、【解析】

通过平方,将无理不等式化为有理不等式求解即可。【详解】由得,解得,所以解集是。【点睛】本题主要考查无理不等式的解法。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】

(1)连接,由菱形的性质以及中位线,得,由平面平面,且交线,得平面,故而,最后由线面垂直的判定得结论.(2)以为原点建平面直角坐标系,求出平面平与平面的法向量,,最后求得二面角的余弦值为.【详解】解:(1)连结∵,且是的中点,∴∵平面平面,平面平面,∴平面.∵平面,∴又为菱形,且为棱的中点,∴∴.又∵,平面∴平面.(2)由题意有,∵四边形为菱形,且∴分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则设平面的法向量为由,得,令,得取平面的法向量为∴二面角为锐二面角,∴二面角的余弦值为【点睛】处理线面垂直问题时,需要学生对线面垂直的判定定理特别熟悉,运用几何语言表示出来方才过关,一定要在已知平面中找两条相交直线与平面外的直线垂直,才可以证得线面垂直,其次考查了学生运用空间向量处理空间中的二面角问题,培养了学生的计算能力和空间想象力.18、(1)(2)的递减区间为和【解析】

(1)化简函数,代入,计算即可;(2)先利用正弦函数的图象与性质求出函数的单调递减区间,再结合即可求出.【详解】(1),从而.(2)令.解得.即函数的所有减区间为,考虑到,取,可得,,故的递减区间为和.【点睛】本题主要考查了三角函数的恒等变形,正弦函数的图象与性质,属于中档题.19、(Ⅰ)C的方程为,焦点F的坐标为(1,0);(Ⅱ)1【解析】

(Ⅰ)根据抛物线定义求出p,即可求C的方程及焦点F的坐标;

(Ⅱ)设点A(x1,y1),B(x1,y1),由已知得Q(−1,−1),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)−1(k≠0),与抛物线联立可得ky1-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|•|NF|的值.【详解】(Ⅰ)由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(−1,−1),由题意直线AB斜率存在且不为0.设直线AB的方程为y=k(x+1)−1(k≠0).由得,则,.因为点A,B在抛物线C上,所以,.因为PF⊥x轴,所以,所以|MF|⋅|NF|的值为1.【点睛】本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.20、(1)在为增函数;证明见解析(2)【解析】

(1)令,求出,可推得,故在为增函数;(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.【详解】(1)当时,.记,则,当时,,.所以,所以在单调递增,所以.因为,所以,所以在为增函数.(2)由题意,得,记,则,令,则,当时,,,所以,所以在为增函数,即在单调递增,所以.①当,,恒成立,所以为增函数,即在单调递增,又,所以,所以在为增函数,所以所以满足题意.②当,,令,,因为,所以,故在单调递增,故,即.故,又在单调递增,由零点存在性定理知,存在唯一实数,,当时,,单调递减,即单调递减,所以,此时在为减函数,所以,不合题意,应舍去.综上所述,的取值范围是.【点睛】本题主要考查了导数的综合应用,利用导数研究函数的单调性、最值和零点及不等式恒成立等问题,考查化归与转化思想、分类与整

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论