版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023版人教版初中数学同步讲义练习八年级下册
专题20.1数据的集中趋势1.掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数;2.在加权平均数中,知道权的差异对平均数数的影响,并能用加权平均数解释现实生活中的一些简单现象;3.理解平均数、中位数、众数的差别,初步体会他们在不同情景中的应用。知识点01平均数【知识点】1)算术平均数:一般地,有n个数x1,x2,…,xn,那么=。简称平均数。算术平均数反映了这一组数据的集中趋势,表示了这组数据的平均水平。注:当任一数据变化时,都会影响算术平均数。2)结论:若=;=。则:=1\*GB3①x1±y1,x2±y2,…,xn±yn的平均数为±;=2\*GB3②x1,y1,x2,y2…,xn,yn的平均数为(+)。=3\*GB3③ax1+b,ax2+b,…,axn+b的平均数为a+b。∵ax1,ax2,…,axn的平均数为a;∴x1+b,x2+b,…,xn+b的平均数为+b。3)加权平均数:一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则eq\f(x1ω1+x2ω2+…+xnωn,ω1+ω2+…+ωn)叫做这n个数的加权平均数.前面求算术平均数,是将每个数据认为同等重要,即每个数据的权重都是1。注意:计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.【知识拓展1】算术平均数1例1..(2022·海南省直辖县级单位·七年级期末)某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么在这6天内用水量高于平均用水量的是(
)A.第一天 B.第三天 C.第四天 D.第五天【答案】C【分析】根据函数图象得到每天的用水量,根据算术平均数的计算公式计算即可.【详解】解:这6天的平均用水量=(吨),A选项第一天用水量30(吨)<32(吨),故不符合题意,B选项第三天用水量32(吨)=32(吨),故不符合题意,C选项第四天用水量37(吨)>32(吨),故符合题意,D选项第五天用水量28(吨)<32(吨),故不符合题意.故选:C.【点睛】本题考查的是函数的图象和算术平均数的计算,读懂图象信息、掌握平均数的计算公式是解题的关键.【即学即练】1.(2022·绵阳市初三月考)某中学宪法知识竞赛计分办法是:去掉一个最高分,去掉一个最低分,其余成绩平均得分就是选手得分.7位评委给杨明同学的打分分别是:82,84,85,90,86,85,90.杨明得分是________分.【答案】86【分析】平均数是指在一组数据中所有数据之和再除以数据的个数,按照竞赛计分办法计算即可.【解析】∵观察后发现最高分为90,最低分为82,∴杨明最后得分=(84+85+86+85+90)÷5=86.
故答案为:86.【点睛】本题考查了算术平均数,掌握算术平均数的定义是关键.2.(2022·成都市·九年级期中)某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据整理如表:节水量人数/名6284请你估计这100名同学的家庭一个月节约用水的总量大约是()A. B. C. D.【答案】C【分析】利用组中值求样本平均数,即可解决问题.【详解】解:利用组中值求平均数可得:选出的20名同学家平均一个月节约用水量为:,由样本平均数估计总体平均数,这100名同学的家庭平均一个月节约用水量为,故总量约是.故答案选:C.【点睛】本题考查样本平均数、组中值,利用样本平均数估计总体等知识,解题的关键是灵活运用所学统计知识解决实际问题.【知识拓展2】算术平均数2例2.(2022·浙江·宁波市八年级期末)若,,,的平均数为,,,,的平均数为,则,,,的平均数为
(
)A. B. C. D.【答案】C【分析】根据平均数的定义进行计算即可求解.【详解】因为,,,的平均数为,,,,的平均数为,根据平均数的定义,,,,的平均数.故选:C.【点睛】本题考查平均数,掌握平均数的定义是解决此题的关键.【即学即练】1.(2022·山东威海·八年级期中)某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,所求得的平均数为83,则实际平均数是(
)A.80 B.83.5 C.86 D.82.5【答案】C【分析】根据题意可以得到求出的平均数与实际平均数之间的差值,本题得以解决.【详解】解:∵(105﹣15)÷30=90÷30=3,∴求出的平均数比实际平均数小3,∴实际平均数是83+3=86.故选:C.【点睛】本题考查算术平均数,解题的关键是明确算术平均数的计算方法.2.(2022·东营市九年级模拟)已知:2,4,2x,4y四个数的平均数是5;5,7,4x,6y四个数的平均数是9,则x2+y3=______.【答案】17【分析】分别计算出两组数据的平均数,这样即可表示出x与y的关系,再解方程组即可求得x与y的值,即可求得x2+y3的值.【详解】解:由题意知,(2+4+2x+4y)÷4=5,(5+7+4x+6y)÷4=9;∴2x+4y=14和4x+6y=24;解这两个方程组成的方程组得,x=3,y=2;∴x2+y3=9+8=17.故答案为:17.【点睛】本题考查了平均数的概念和二元一次方程组的解法,根据题意列出二元一次方程组是解题的关键.【知识拓展3】算术平均数3例3.(2022·浙江温州·八年级期中)已知样本数据的平均值为4,则样本数据的平均值为__________.【答案】9【分析】根据算术平均数的计算方法求解即可.【详解】解:∵数据的平均值为4,∴,∴,即样本数据的平均值为9;故答案为:9.【点睛】此题考查了算术平均数,掌握算术平均数的计算公式是解题的关键,是一道基础题.【即学即练】1.(2022·福建安溪·八年级期末)已知一组数据x1,x2,x3的平均数为7,则3x1+2,3x2+2,3x3+2的平均数为()A.7 B.9 C.21 D.23【答案】D【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x1,x2,x3的和,然后再用平均数的定义求新数据的平均数.【详解】解:∵一组数据x1,x2,x3的平均数为7,∴x1+x2+x3=7×3=21,∴数据3x1+2,3x2+2,3x3+2的平均数为:(3x1+2+3x2+2+3x3+2)=[3(x1+x2+x3)+6]=23,故选:D.【点睛】此题考查平均数的意义,掌握平均数的计算方法是解决问题的关键.【知识拓展4】算术平均数4例4.(2022·广西贺州·八年级期末)数据10,3,a,7,5的平均数是6,则a等于().A.3 B.4 C.5 D.6【答案】C【分析】利用平均数的计算公式进行计算即可.【详解】解:由题意得:,解得:;故选C.【点睛】本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.【即学即练】1.(2022·浙江杭州·一模)已知五个数a,b,c,d,e,它们的平均数是90,a,b,c的平均数是80,c,d,e的平均数是95,那么你可以求出______(a,b,c,d,e选填一个),它等于_____.【答案】
c
75【分析】根据算术平均数的计算公式进行解答,即可得出答案.【详解】解:∵a,b,c,d,e,这五个数的平均数是90,∴这五个数的和是90×5=450,∵a,b,c的平均数是80,∴这三个数的和是80×3=240,∴d,e的和是450﹣240=210,∵c,d,e的平均数是95,∴c=95×3﹣210=75.∴可以求出c,它等于75.故答案为:c,75.【点睛】本题考查了算术平均数,熟练掌握算术平均数的计算公式是解题的关键.2.(2022·湖南·长沙市第十五中学八年级期末)一组数据2,1,4,x,6的平均值是4,则x的值为(
)A.3 B.5 C.6 D.7【答案】D【分析】根据平均数的定义,即可求解.【详解】解:∵一组数据2,1,4,x,6的平均值是4,∴,解得:.故选:D【点睛】本题主要考查了根据平均数求未知量,熟练掌握平均数等于一组数据的总和除以数据的个数是解题的关键.【知识拓展5】加权平均数例5.(2022·河南·八年级期末)某建筑公司承诺:正常上班的工资为200元/天,不能正常上班(如下雨)发基本工资80元/天,如果小张某月(30天)正常上班的天数为20天,则小张该月日平均工资为(
)A.140元 B.160元 C.176元 D.182元【答案】B【分析】直接根据“正常上班的工资为200元/天,不能正常上班(如下雨)发基本工资80元/天,如果小张某月(30天)正常上班的天数为20天,则小张该月日平均工资”列式求解即可.【详解】解:由题意得小张该月日平均工资为(元).故选B.【点睛】本题考查了求加权平均数,根据题意列出算式是解题的关键.【即学即练】1.(2022·湖南怀化·八年级期末)一家公司招考某工作岗位,只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,如果孔明数学得分为80分,估计综合得分最少要达到84分才有希望,那么他的物理最少要考(
)分A.86 B.88 C.90 D.92【答案】C【分析】设物理要考x分,根据加权平均数的计算公式得到方程,解方程即可.【详解】设物理要考x分,由题意得:解得:x=90即物理最少要考90分,才能使综合得分最少达到84分故选:C.【点睛】本题考查了加权平均数,根据加权平均数的计算公式列出方程解决,因此掌握加权平均数的计算公式是关键.2.(2023·江苏泰州市·九年级一模)某快餐店某天销售3种盒饭的有关数据如图所示,则3种盒饭的价格平均数是_____元.【答案】8.7【分析】根据扇形统计图获取信息,利用加权平均数的定义列式计算即可.【详解】解:3种盒饭的价格平均数是6×25%+8×15%+10×60%=8.7(元),故答案为:8.7.【点睛】本题考查获取扇形统计图信息,加权平均数,掌握获取扇形统计图信息,加权平均数,会利用加权平均数解决问题是关键.知识点02中位数和众数【知识点】1)中位数:将一组数据从小到大(或从大到小)排列,如果数据是奇数个,则处于中间的数为中位数;若数据是偶数个,则中间两个数据的平均数为中位数。注:=1\*GB3①所有数据需排列(从大到小或从小到大);=2\*GB3②中位数有可能不是这组数据中的数;=3\*GB3③中位数反映了中间水平。2)众数:一组数据中出现次数最多的数据.注:=1\*GB3①众数不一定唯一;=2\*GB3②众数反应了一组数据中的趋势量,即数据出现频次最高的量。【知识拓展1】中位数例1.(2022·湖北·武汉九年级阶段练习)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的中位数是______.成绩(分)678910人数正一正正一正正正【答案】8【分析】根据表格及中位数的求法可直接进行求解.【详解】解:由表格可知这40名同学投掷实心球的成绩的中位数是第20、21两人成绩的平均数,即为;故答案为8.【点睛】本题主要考查中位数,熟练掌握中位数是解题的关键.【即学即练1】1.(2023·广东·惠州市九年级开学考试)小燕的父亲近六个月的手机话费(单位:元)如下:81,75,70,64,98,92.这组数据的中位数是________.【答案】78【分析】先将这组数据按大小顺序排列,再求出第三和第四个数据的平均数即可.【详解】解:把这句数据按大小顺序排列为:64,70,75,81,92,98;∴这句数据的中位数为:,故答案为:78.【点睛】本题主要考查了求一组数据的中位数,熟练掌握中位数的定义是解题的关键.奇数个数据的中位数是按大小顺序排列后中间的一个数据;偶数个数据的中位数是按大小顺序排列后中间两个数据的平均数.2.(2022·浙江·一模)丽水市九县(市、区)的人数统计如下表,这些表示人数的数据中,中位数是(
)县域莲都区青田县缙云县遂昌县松阳县云和县庆元县景宁县龙泉市人数(万人)56.250.940.519.420.512.914.311.124.9A.19.4万 B.24.9万 C.20.5万 D.14.3万【答案】C【分析】根据中位数的定义进行解答即可.【详解】这些数据从小到大排列为:11.1、12.9、14.3、19.4、20.5、24.9、40.5、50.9、56.2,一共9个数据,最中间的是20.5,∴中位数为20.5万人,故选:C.【点睛】本题考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)叫做这组数据的中位数,熟练掌握其定义是解题的关键.【知识拓展2】众数例2.(2022·福建·福州立志中学九年级阶段练习)福州市某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数是________.日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.536.336.236.436.3【答案】36.2【分析】根据众数的定义即可得解.【详解】解:∵表格中36.2出现的次数最多,为3次,∴该名同学这一周体温数据的众数是36.2.故答案为:36.2.【点睛】本题考查求众数,掌握一组数据中出现次数最多的数值是众数是解题关键.【即学即练2】1.(2022·福建九年级开学考试)已知一组数据为1,10,6,4,7,4,则这组数据的众数为_____.【答案】4【分析】根据众数的定义就可以求解.【详解】解:4出现的次数最多,所以众数为4.故答案为:4.【点睛】主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.2.(2022·湖南·长沙市长郡双语实验中学九年级开学考试)小张同学的射击成绩为5,7,9,10,7,则这组数据的众数是______.【答案】7【分析】一组数据中出现频次最多的数据,即为这组数据的众数.【详解】解:这组数据中7出现的频次为两次,其他数据均出现了一次,所以这组数据的众数为7.故答案为:7.【点睛】本题考查了众数的判断,掌握众数的概念是解题关键.【知识拓展3】统计量的选择-中位数例3.(2022·河北·石家庄九年级阶段练习)在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的(
)A.平均数 B.众数 C.方差 D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩,杨超越要想知道自己是否能进入决赛,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:共有15名学生参加预赛,取前8名,所以杨超越需要知道自己的成绩是否进入前8,我们把所有同学的成绩按大小顺序排列,第8名的成绩是这组数据的中位数,所以她知道这组数据的中位数,才能知道自己是否进入决赛,故选D.【点睛】本题考查了统计量的选择,熟练掌握中位数的意义是解本题的关键.【即学即练】1.(2022·河南洛阳·八年级期末)在一次数学测试中,小明的成绩是75分,超过本班半数同学的成绩,分析得出这个结论所用的统计量是(
)A.平均数 B.众数 C.中位数 D.方差【答案】C【分析】根据中位数的意义求解可得.【详解】解:班级数学成绩排列后,最中间一个数或最中间两个分式的平均数是这组成绩的中位数,半数同学的成绩位于中位数以下,∴小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:C.【点睛】此题考查了中位数的意义,熟记中位数的定义是解题的关键.2.(2022·福建·莆田八中八年级期末)为了方便市民出行,打造健康莆田,莆田市政府推出“YouBike微笑自行车”的社会公共服务项目.微笑自行车运营管理公司经过调查获得关于微笑自行车租用骑行时间的数据,并由此制定了收费标准:若每次租用单车骑行a小时以内,则不收取费用;若超过a小时后,超过部分每小时收费1元.为保证不少于50%的骑行是免费的,自行车运营管理公司应从此次调查得到的骑行时间的数据中,选取下列哪个统计了作为a的值(
)A.平均数 B.众数 C.中位数 D.方差【答案】C【分析】根据中位数的意义求解即可.【详解】解:∵要保证不少于50%的骑行是免费的,而中位数是这组数据最中间的数或最中间2个数的平均数∴选取中位数作为a的值最合适,故选:C.【点睛】本题主要考查统计量的选择,解题的关键是掌握中位数的意义.【知识拓展4】统计量的选择-众数例4.(2022·河北秦皇岛·八年级期末)某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子,下面的调查数据最值得关注的是(
)A.平均数 B.中位数 C.众数 D.方差【答案】C【分析】根据题意,可得:幼儿园调查的目的是得出最喜欢哪种口味的粽子的人数最多,以便决策,再根据众数的意义,即可得出结果.【详解】解:根据题意,可知:幼儿园调查的目的是明确最喜欢哪种口味的粽子的人数最多,∵众数是数据中出现次数最多的数,∴幼儿园最值得关注的是统计数据中的众数.故选:C.【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数的意义,反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的应用.【即学即练】1.(2022·浙江衢州·八年级期末)一家鞋店对上周某一品牌的销售情况统计如下表:尺码(厘米)22.52323.52424.5销售量(双)251173该店决定本周进鞋时多进些尺码为23.5厘米的鞋,影响鞋店决策的统计量是(
).A.平均数 B.中位数 C.众数 D.方差【答案】C【分析】根据各个选项的意义进行判断即可得到答案.【详解】观察各个尺码的鞋的销售量知,尺码为23.5厘米的鞋销售量最多,即影响鞋店决策的统计量是众数.故选:C.【点睛】本题考查统计的相关知识,掌握平均数、中位数、众数、方差的意义是关键.2.(2022·浙江杭州·八年级阶段练习)“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行数据统计分析,从而确定各款商品批发数量,此时店家应重点参考(
)A.众数 B.平均数 C.中位数 D.方差【答案】A【分析】在决定在这个月的进货中多进某种型号服装,应考虑各种型号的服装销售数量,选销售量最大的,即参考众数.【详解】解:“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行了数据统计分析,从而确定各款商品批发数量,此时店家应重点参考众数.故选:A.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,解题的关键是对统计量进行合理的选择和恰当的运用.【知识拓展5】中位数与众数综合例1.(2022·江苏·九年级月考)一组数据﹣1,3,1,2,b的唯一众数为﹣1,则这组数据的中位数为__.【答案】1【分析】根据众数和中位数的概念求解.【详解】解:∵数据-1、3、1、2、b的众数为-1,∴b=-1,则数据重新排列为-1、-1、1、2、3,所以中位数为1,故答案为1.【点睛】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【即学即练】1.(2022·浙江湖州·八年级期末)若一组数据1,5,2,3,x,y的平均数为3,众数也为3,则这组数据的中位数为_________.【答案】3【分析】根据这组数据的众数为3,可确定x和y中至少有一个值为3,再根据平均数为3即可确定另一个值,从而根据中位数的定义求出结果.【详解】∵这组数据的众数为3,∴x和y中至少有一个值为3.∵平均数为3,假设x=3,∴,解得:,∴这组数据按从大到小排列为1,2,3,3,4,5,且符合题意,∴这组数据的中位数为.故答案为:3.【点睛】本题考查平均数、众数和中位数的定义.由平均数和众数具体的求出这组数据是解题关键.2.(2022·湖北黄石·八年级期末)一组2,2x,y,12中,唯一的众数是12,平均数是10,这数据的中位数是_______.【答案】12【分析】先根据数据的平均数为,得出,再根据唯一众数为,得出或,然后按照从小到大排列即可得出答案.【详解】数据,,,的平均数是,,即,数据,,,唯一的众数是,或,即或,当时,,将数据按照从小到大排列如下:,,,,得出中位数为:;当时,,将数据按照从小到大排列如下:,,,,得出中位数为:;故答案:.【点睛】本题考查了平均数、中位数及众数的意义,解题的关键是熟练掌握相关概念并应用求解.【知识拓展6】平均数、中位数、众数的综合运用例6.(2022·北京门头沟·七年级期末)一组从小到大排列的数据:2,5,x,y
,2x,11,这组数据的平均数与中位数都是7,则这组数据的众数是(
)A.2 B.5 C.7 D.11【答案】B【分析】根据平均数与中位数的定义可以先求出x,y的值,进而就可以确定这组数据的众数.【详解】∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴平均数为(2+5+x+y+2x+11)=7中位数为:(x+y)=7,解得y=9,x=5,∴这组数据的众数是5.故选:B.【点睛】本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.【即学即练】1.(2022·福建·厦门八年级期末)已知一组数据由五个正整数组成,它的中位数和众数都是2,则这五个数的和的最小值是(
)A.7 B.8 C.9 D.10【答案】B【分析】根据题意可直接进行求解.【详解】解:由一组数据由五个正整数组成,它的中位数和众数都是2,若要使这五个数的和最小,则这五个数由1和2组成,即为1、1、2、2、2,其和为1+1+2+2+2=8;故选B.【点睛】本题主要考查中位数与众数,熟练掌握中位数与众数是解题的关键.2.(2022·江苏·九年级专题练习)五个正整数,中位数是,众数是,则这五个正整数的平均数是______.【答案】或或【分析】首先根据众数与中位数的意义,推出这五个数据,再由平均数的意义得出结果.【详解】解:据题意得,此题有三个数为,,;又因为一组数据由五个正整数组成,所以另两个为,或,或,;所以这五个正整数的平均数是,或,或.故答案为:或或.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时要注意理解题意,要细心,不要漏解.平均数:是指一组数据中所有数据之和再除以数据的个数;中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数;众数:在一组数据中出现次数最多的数.题组A基础过关练1.(2022·海南·七年级期末)某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么在这6天内用水量高于平均用水量的是(
)A.第一天 B.第三天 C.第四天 D.第五天【答案】C【分析】根据函数图象得到每天的用水量,根据算术平均数的计算公式计算即可.【详解】解:这6天的平均用水量=(吨),A选项第一天用水量30(吨)<32(吨),故不符合题意,B选项第三天用水量32(吨)=32(吨),故不符合题意,C选项第四天用水量37(吨)>32(吨),故符合题意,D选项第五天用水量28(吨)<32(吨),故不符合题意.故选:C.【点睛】本题考查的是函数的图象和算术平均数的计算,读懂图象信息、掌握平均数的计算公式是解题的关键.2.(2022·广西贺州·八年级期末)数据10,3,a,7,5的平均数是6,则a等于().A.3 B.4 C.5 D.6【答案】C【分析】利用平均数的计算公式进行计算即可.【详解】解:由题意得:,解得:;故选C.【点睛】本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.3.(2022·河南·八年级期末)某建筑公司承诺:正常上班的工资为200元/天,不能正常上班(如下雨)发基本工资80元/天,如果小张某月(30天)正常上班的天数为20天,则小张该月日平均工资为(
)A.140元 B.160元 C.176元 D.182元【答案】B【分析】直接根据“正常上班的工资为200元/天,不能正常上班(如下雨)发基本工资80元/天,如果小张某月(30天)正常上班的天数为20天,则小张该月日平均工资”列式求解即可.【详解】解:由题意得小张该月日平均工资为(元).故选B.【点睛】本题考查了求加权平均数,根据题意列出算式是解题的关键.4.(2022·江苏·无锡市九年级阶段练习)为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如表,则关于这若干户家庭的用水量,下列说法错误的是(
)月用水量/吨户数/户A.众数是 B.平均数是C.调查了户家庭的月用水量 D.中位数是【答案】B【分析】利用统计量的定义解题即可.【详解】解:A、出现了次,出现的次数最多,则众数是,故说法正确,本选项不符合题意;B、这组数据的平均数是:,故说法错误,本选项符合题意;C、调查的户数是,故说法正确,本选项不符合题意;D、这组数据从小到大排列,最中间的两个数的平均数是,故说法正确,本选项不符合题意;故选:B.【点睛】本题主要考查统计量的定义及计算方法,熟练的掌握众数,平均数,中位数的定义是解题关键.5.(2022·河南驻马店·八年级期末)杨靖宇将军纪念馆“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比.这两组数据一定不变的是(
)A.中位数 B.众数 C.平均数 D.以上都不对【答案】A【分析】根据题意“从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比”和中位数的定义:“按顺序排列的一组数据中居于中间位置的数.”可知,7个原始评分和5个有效评分中最中间的数不发生变化,所以一定不变的是中位数.【详解】根据题意和中位数定义可知,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比,最中间的数一定不变,即中位数一定不变.故选:A【点睛】本题考查数据的整理:平均数、中位数、众数等知识点.理解平均数、中位数、众数的定义特征是解本题的关键.平均数:在一组数据中所有数据之和再除以这组数据的个数.中位数:按顺序排列的一组数据中居于中间位置的数.众数:在一组数据中,出现次数最多的数.6.(2022·成都市·九年级单元测试)为了解体育锻炼情况,班主任从八(5)班45名同学中随机抽取8位同学开展“1分钟跳绳”测试,得分如下(满分15分):15,10,13,13,8,12,13,12,则以下判断正确的是(
)A.这组数据的众数是13,说明全班同学的平均成绩达到13分;B.这组数据的中位数是12,说明12分以上的人数占大多数;C.这组数据的平均数是12,可以估计全班同学的平均成绩是12分;D.以上均不正确.【答案】C【分析】根据众数、平均数、方差以及中位数的定义,求得它们的值,进而得出结论.【详解】解:A.这组数据的众数是13,不能说明全班同学的平均成绩达到13,故本选项不合题意;B.这组数据的中位数是12,说明12分以上的人数占一半,故本选项不合题意;C.这组数据的平均数是12,可以估计全班同学的平均成绩是12分,说法正确,故本选项符合题意;D.选项C正确,故本选项不合题意;故选:C.【点睛】本题主要考查了众数、平均数、方差以及中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量.7.(2022·黑龙江·木兰县八年级期末)某同学求30个数据的平均数时,漏加了一个数据50,正确计算出这29个数据的平均数为20,则实际30个数据的平均数为__________.【答案】21【分析】首先根据题意可求得29个数据的总和,再加上50,根据求平均数的公式即可求得.【详解】解:29个数据的总和为:,故30个数据的平均数为:,故答案为:21.【点睛】本题考查了平均数的求法,熟练掌握和运用平均数的求法是解决本题的关键.8.(2020·浙江·金华市南苑中学九年级期中)今年某果园随机从甲、乙两个品种的苹果树中各选了5棵,每棵产量(单位:千克)如表所示:12345甲2319212227乙1826202328明年准备从这两个品种中选出一种产量较高的苹果树进行种植,则应选的品种是__________.【答案】乙【分析】分别两个品种的苹果树的产量的平均数,再比较,即可求解.【详解】解:甲品种的苹果树的产量的平均数为千克;乙品种的苹果树的产量的平均数为千克;∵23>22.4,∴甲品种的苹果树的产量的平均数高于乙品种的苹果树的产量的平均数,∴乙苹果树的产量较高.故答案为:乙【点睛】本题主要考查了求平均数,熟练掌握平均数等于数据的总和除以数量是解题的关键.9.(2022·辽宁盘锦·八年级期末)某校为推荐一部作品参加科技创新比赛,对甲、乙、丙三位学生的候选作品进行量化评分,具体成绩如表,如果按照创新性占60%,实用性占40%,根据成绩择优在甲、乙、丙中推荐一部作品,则应推荐的作品为_____.(填“甲”、“乙”或“丙”)项目作品甲乙丙创新性859590实用性908590【答案】乙【分析】根据加权平均数计算出每一个人的平均成绩,在2进行大小比较即可解答.【详解】甲的平均成绩:(分);乙的平均成绩:(分);丙的平均成绩:(分).故答案为:乙.【点睛】本题考查加权平均数的实际应用,读懂题并能利用加权平均数是解题关键.10.(2022·甘肃·九年级期末)某初中毕业班有男生25人,女生29人,在一次数学测验中,男生成绩的中位数是79,且中位数的频率为0.04;女生成绩的中位数是80,且中位数的频数是1,若学生成绩均为整数,大于或等于80分为优秀,则这次测验全班学生成绩优秀率为_____.【答案】50%【分析】根据已知条件可以得出男生女生达到80分以上的人数,然后根据优秀率公式即可得出答案.【详解】解:男生25人,中位数是79,中位数的频率为0.04,∴男生80分及以上的有12人,女生有29人,成绩的中位数是80,中位数的频数是1,∴女生80分及以上的有15人,∴优秀率为.故答案为:.【点睛】本题考查了频率与频数,中位数的意义,求得成绩优秀的人数是解题的关键.11.(2022·浙江·九年级开学考试)北京冬奥会女子大跳台决赛的打分规则;6名裁判打分,去除一个最高分和一个最低分,剩余4个分数的平均值为该选手成绩.下表是中国选手谷爱凌第一跳的得分情况,其中裁判4,裁判5的打分(分别为94分和a分)被去除.裁判1裁判2裁判3裁判4裁判5裁判6成绩94分94分94分b分93.75分请根据表中信息,解决以下问题;(1)求b的值.(2)判断a是否最低分并说明理由.(3)从平均数的特征说说打分规则中去除一个最高分及一个最低分的合理性.【答案】(1)93(2)a是最低分,只有当a≤93符合题意,否则就不满足平均数是93.75,且去掉的是94分和a分;(3)由于平均数容易受到极端值的影响而发生变化,因此去除一个最高分及一个最低分可以避免平均数受极端值的影响.【分析】(1)根据平均数的计算方法进行计算即可;(2)根据计算成绩的方法进行判断即可;(3)根据影响平均数的因素进行判断即可.(1)解:由题意得,解得b=93,答:b的值为93;(2)解:a是最低分,由题意可知a≤93,否则就不满足平均数是93.75,且去掉的是94分和a分;(3)解:由于平均数容易受到极端值的影响而发生变化,因此去除一个最高分及一个最低分可以避免平均数受极端值的影响.【点睛】本题考查算术平均数,理解平均数的意义,掌握平均数的计算方法是解决问题的前提.12.(2022·河北保定·九年级期末)某部门为了解工人的生产能力情况,进行了抽样调查,随机抽取了20名工人每天每人加工零件的个数,整理得到如下统计表和条形统计图.统计量平均数众数中位数数值19.2根据以上信息,解答下列问题:(1)分别求,的值;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据______来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手,若该部门有300名工人,试估计该部门生产能手的人数.【答案】(1)众数m=18;中位数n=19(2)中位数(3)该部门生产能手为90人【分析】(1)根据众数和中位数的概念计算即可.(2)想让60%左右的工人能获奖意思就是要奖励前60%.(3)先计算这20个人中生产能手所占的百分比,再用300乘以这个百分比即可估计该部门生产能手的人数.(1)由条形统计图知,数据18出现的次数最多,∴众数m=18;中位数是第10、11个数据的平均数,而第10、11个数据都是19.∴中位数n=19;(2)想让60%左右的工人能获奖意思就是要奖励前60%∴应根据中位数来确定奖励标准比较合适故答案为:中位数;(3)若该部门有300名工人,估计该部门生产能手的人数为300×=90(人)【点睛】本题主要考查了平均数,中位数,众数.掌握平均数,中位数,众数的计算方法及样本和总体的关系是解题的关键.题组B能力提升练1.(2022·山东济宁·八年级期末)x1、x2、……、x10的平均数为m,x11、x12、……、x50的平均数为n,则x1、x2、……、x50的平均数为(
)A.m+n B. C. D.【答案】D【分析】由x1、x2、……、x10的平均数为m,x11、x12、……、x50的平均数为n知,x1+x2+……+x10=10m,x11+x12+……+x50=40n,再根据算术平均数的定义可得答案.【详解】解:∵x1、x2、……、x10的平均数为m,x11、x12、……、x50的平均数为n,∴x1+x2+……+x10=10m,x11+x12+……+x50=40n,∴x1、x2、……、x50的平均数为,故选:D.【点睛】本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.2.(2022·辽宁葫芦岛·八年级期末)将一组数据的每一个数都减去30,所得新的一组数据的平均数是1,则原来那组数据的平均数为(
)A.31 B.30 C.1 D.29【答案】A【分析】设这组数据的平均数为=a,根据每个数都减去30的平均数为,,求得a=31.【详解】设这组数据的平均数为=a,每个数都减去30,其平均数为,=a-=a-30=1,解得a=31.故选A.【点睛】本题主要考查了平均数,解决问题的关键是熟练掌握平均数的定义和计算方法.3.(2022·河北·石家庄九年级阶段练习)某学校为了鼓励学生积极参加体育锻炼,规定体育科目学期成绩满分100分,其中平时表现(早操、课间操)、期中考试和期末考试成绩按比例计入学期总成绩.甲、乙两名同学的各项成绩如下:(
)学生平时表现/分期中考试/分期末考试/分甲969186乙829790A.甲、乙二人的总成绩都是90分B.甲、乙二人的总成绩都是89分C.甲的总成绩是90分,乙的总成绩是89分D.甲的总成绩是89分,乙的总成绩是90分【答案】C【分析】根据加权平均数的计算公式分别求出甲和乙的总成绩,即可得出结论.【详解】解:甲的总成绩为:(分),乙的总成绩为:(分).故选:C【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解本题的关键.加权平均数的计算公式:.4.(2022·河北·北师大石家庄长安实验学校九年级阶段练习)某公司共有51名员工(包括1名经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,则这家公司所有员工今年的工资与去年相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数【答案】D【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然;由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.众数也没有变化.故选:D.【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.5.(2022·贵州黔东南·八年级期末)某装配车间为了较合理地确定每名工人标准目产量,车间管理者从过去的工作日中随机地抽查了该车间15名工人在某一天中各自装配机器的数量(单位:台),具体如下:6,7,7,8,8,8,8,9,10,10,11,13,15,15,16.根据抽样的数据,车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的(
)A.最大数据 B.众数 C.中位数 D.平均数【答案】C【分析】根据中位数的意义即可得出答案.【详解】解:由抽样数据可知,其中位数是排序后第8个数据,即9,且最大数据、众数、平均数都不是9,∴车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的中位数,故选:C.【点睛】此题考查了中位数、众数、平均数及运用中位数作决策,熟练掌握中位数、众数、平均数的求法是解题的关键.6.(2022·云南昆明·八年级期末)一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是(
)A.3.6 B.3.2或3.8 C.3.4或3.6 D.3.2或3.6【答案】C【分析】先根据从小到大排列的这组数据且x为正整数、有唯一众数4得出x的值,再利用算术平均数的定义求解可得.【详解】解:∵一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,∴x取1或2,当x=2时,该组数据的平均数是;当x=1时,该组数据的平均数是;∴该组数据的平均数是3.4或3.6.故选:C【点睛】本题主要考查算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.7.(2022·黑龙江牡丹江·八年级期末)一组数据为1,3,2,2,a,b,c,唯一众数是3,平均数是2,则这组数据的中位数是_______.【答案】2【分析】根据唯一众数是3,可得a,b,c三个数中,有2个数均为3,再由平均数是2,可求出c=0,即可求解.【详解】解:∵唯一众数是3,∴a,b,c三个数中,有2个数均为3,不妨设a=3,b=3,∵平均数是2,∴(1+3+2+2+3+3+c)÷7=2,解得:c=0,∴把这一组数从小到大排列为0,1,2,2,3,3,3,位于第4位的数为2,∴这组数据的中位数是2.故答案为:2【点睛】本题主要考查了众数,平均数的意义,求中位数,根据题意得到a,b,c三个数中,有2个数均为3是解题的关键.8.(2022·河北·邢台市开元中学八年级阶段练习)已知一组数据、、、、的平均数是5,则另一组新数组、、、、的平均数是_____.【答案】8【分析】根据原数据的平均数为5,计算所有原数据的总和为25,即可求出新数据的平均数.【详解】、、、、的平均数是5,,新数据的平均数为:,故答案为:8.【点睛】本题考查了平均数,解题关键是熟记平均数公式:平均数=所有数的总和÷数的个数.9.(2022·河北·泊头市教师发展中心九年级期中)某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是___.【答案】-3【分析】在输入的过程中错将其中一个数据105输入为15少输入90,在计算过程中共有30个数,所以少输入的90对于每一个数来说少3,实际平均数与求出的平均数的差即可求出.【详解】∵在输入的过程中错将其中一个数据105输入为15则少输入90,即,∴平均数少3,求出的平均数与实际平均数的差为-3,故答案为:-3.【点睛】本题考查平均数的性质,求数据的平均值是研究数据常做的,平均值反映数据的平均水平,可以准确的把握数据的情况.10.(2022·北京·垂杨柳中学八年级期中)一位求职者参加某公司的招聘,面试和笔试的成绩分别是86和90,公司给出他这两项测试的平均成绩为87.6,可知此次招聘中_____(填“面试”或“笔试”)的权重较大.【答案】面试【分析】设此次招聘中面试的权重为,从而可得笔试的权重为,根据加权平均数的计算公式求出的值,由此即可得出答案.【详解】解:设此次招聘中面试的权重为,则笔试的权重为,由题意得:,解得,,则此次招聘中面试的权重较大,故答案为:面试.【点睛】本题考查了加权平均数,熟记公式是解题关键.11.(2022·浙江·余姚市兰江中学八年级期中)浙江某大学部分专业采用“三位一体”的形式进行招生,现有甲、乙两名学生,他们各自的三类成绩(已折算成满分100分)如表所示:学生学业水平测试成绩综合测试成绩高考成绩甲858981乙888183(1)如果根据三项得分的平均数,那么哪位同学排名靠前?(2)“三位一体”根据入围考生志愿,按综合成绩从高分到低分择优录取,综合成绩按“学业水平测试成绩×20%+综合测试成绩×20%+高考成绩×60%”计算形成,那么哪位同学排名靠前?【答案】(1)甲同学排名靠前(2)乙同学排名靠前【分析】(1)利用平均数的公式即可直接求解,即可判断;(2)利用加权平均数公式求解,即可判断.(1)解:甲的平均数为分,乙的平均数为分,∵85>84,∴根据三项得分的平均数,甲同学排名靠前;(2)解:甲同学的综合成绩为分,乙同学的综合成绩为分,∵83.6>83.4,∴乙同学排名靠前.【点睛】本题考查了算术平均数和加权平均数的计算.熟练掌握算术平均数和加权平均数的计算方法是解题的关键.12.(2022·广东湛江·八年级期末)某跳水训练基地为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次调查的样本容量是,图①中m的值为;(2)请把条形统计图补充完整;(3)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【答案】(1),(2)补充条形统计图见解析(3)统计的这组跳水运动员年龄数据的平均数为;众数为;中位数为【分析】(1)根据13岁的人数和百分比即可求出样本容量,再根据15岁的人数和总人数即可求出m的值;(2)求出14岁的人数,补全统计图即可;(3)按照平均数、中位数、众数的定义进行求解即可.(1)解:13岁的人数为5人,百分比为12.5%,可得样本容量为:5÷12.5%=40,m%=,∴m的值为25,故答案为:40,25(2)14岁的人数为40×20%=8(人),补充条形统计图如图,(3)观察条形统计图,可得这组数据的平均数∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为15.【点睛】此题考查了条形统计图和扇形统计图相结合的知识、样本容量、中位数、众数、平均数,熟练掌握相关概念是解题的关键.题组C培优拔尖练1.(2022·重庆巴蜀中学九年级阶段练习)有5个正整数,,,,,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数(),③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件;乙:取,5个正整数满足上述3个条件;丙:当满足“是4的倍数”时,5个正整数满足上述3个条件;丁:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是10p(p为正整数);以上结论正确的个数有(
)个A.1 B.2 C.3 D.4【答案】C【分析】根据每个结论,分别利用题中的3个条件,表示出,,,,,5个数,通过各自的特点与要求进行求解.【详解】解:甲:若,由条件①可得,,,由条件②可得,,由条件③可得,,解得,而为奇数,不符合条件,故甲结论正确;乙:若,由条件①可得,,,由条件②可得,,由条件③可得,,解得,为奇数,符合题意,故乙结论正确;丙:若是4的倍数,设是正整数),条件①可得,,,条件②可得,,由条件③可得,,解得,可知为奇数,符合题意,故丙结论正确;丁:设是正整数),条件①可得,,,条件②可得,,,是奇数,条件③可得,,得,,,,的平均数为,,的平均数为,,,的平均数与,的平均数之和可表示为,是正整数,是5的倍数,但不是10的倍数,故丁结论错误.故选:C.【点睛】本题考查列代数式、奇偶数的定义、解一元一次方程,解题的关键是分别表示出5个符合结论和题干的数,然后利用5个数的特点进行求解.2.(2022·浙江杭州·八年级期中)已知数据1,2,3,4的平均数为;数据5,6,7,8的平均数为;与的平均数是k;数据1,2,3,4,5,6,7,8的平均数为m,那么k与m的关系是(
)A. B. C. D.不能确定【答案】B【分析】根据平均数的定义可得,,从而得到,进而得到,即可求解.【详解】解:∵数据1,2,3,4的平均数为;数据5,6,7,8的平均数为,∴,,∴,∴,∵与的平均数是k,∴,∴.故选:B【点睛】本题主要考查了求平均数,熟练掌握平均数等于数据的总和除以数据的个数是解题的关键.3.(2022·福建·厦门市海沧区北附学校八年级期末)为了绿化环境,柳荫街引进一批法国梧桐.三年后这些树的树干的周长情况如图所示.计算这批法国梧桐树树干的平均周长时,下列式子最合理的是()A.B.C.D.【答案】C【分析】利用频数分布直方图求数据的平均数是利用组中值乘每组频数再除以数据总数.【详解】解:这批法国梧桐树树干的平均周长.故选:C.【点睛】本题考查加权平均数,频数分布直方图,解题的关键是取组中值利用加权平均数的计算公式求解.4.(2022·河北邢台·九年级期末)现有一列数:6,3,3,4,5,4,3,增加一个数x后,这列数的中位数仍不变.则x可能是(
)A.4 B.3 C.2 D.1【答案】A【分析】根据中位数的意义求解即可.【详解】将这组数据从小到大排列为:3,3,3,4,4,5,6,则中位数为4,∵增加一个数x后,这列数的中位数仍不变,则这组数据从小到大排列可以为:3,3,3,4,x,4,5,6,∴中位数为,解得x=4.这组数据从小到大排列还可以为:3,3,3,4,4,5,6,x,∴中位数为,解得,故选:A.【点睛】本题考查中位数,理解中位数的意义是正确解答的前提,将一组数据从小到大排序找出中间位置的一个数或两个数的平均数是解决问题的关键.5.(2022·浙江杭州·八年级期中)一组数据为1,3,5,12,x,其中整数x是这组数据的中位数,则该组数据的平均数可能是()A.4 B.5 C.6 D.7【答案】B【分析】根据1,3,5,12,x这组数据中,x是数据的中位数知x=3或x=4或x=5,再根据平均数的定义分别计算可得.【详解】解:∵数据1,3,5,12,x的中位数是整数x,∴x=3或x=4或x=5,当x=3时,这组数据的平均数为=4.8,当x=4时,这组数据的平均数为=5,当x=5时,这组数据的平均数为=5.2.故选:B.【点睛】本题主要考查中位数、平均数,解题的关键是根据中位数的定义得出x的值.6.(2022·广东湛江·八年级期末)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.【答案】8【分析】根据平均数的意义,求出a、b的值,进而确定两组数据,再合并成一组,找出出现次数最多的数据即可.【详解】解:由题意得,,解得,这两组数合并成一组新数据为:,在这组新数据中,出现次数最多的是8,因此众数是8,故答案为:8.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.7.(2022·重庆·九年级阶段练习)A,B,C,D,E,F六人按顺序围成一圈做游戏,每人抽一个数,已知每人按顺序抽到数字的两倍与其他五个人的平均数之差分别为9,10,13,15,23,30,则C抽到的数字是垫江第八中学校______.【答案】15【分析】设A,B,C,D,E,F六人抽到的数分别为:a,b,c,d,e,f,根据题意列出方程组,即可求解.【详解】设A,B,C,D,E,F六人抽到的数分别为:a,b,c,d,e,f,由题意可得:将所有方程相加,得:,解得:,∴,代入第三个方程,得:,解得:,故答案为:15.【点睛】本题考查了算术平均数,利用方程思想列出方程组是本题的关键.8.(2022·湖北宜昌·八年级期末)国家统计局20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 操作系统课程设计死锁
- 2024年度企业抵押借款合同正本规范范本3篇
- 2024年装修工程合同:某房地产公司与装修公司之间的装修工程合作
- 承德医学院《构成设计》2023-2024学年第一学期期末试卷
- 成都银杏酒店管理学院《自动化专业英语》2023-2024学年第一学期期末试卷
- 二零二五年度住宅小区地下车库车位购置合同4篇
- 皮肤护理的讲解
- 万兆园区规划与实施路径的创新方案
- 豹纹墙面施工方案
- 2025年度智能安防门窗系统安装施工合同范本3篇
- 2022年广东省普通高中学业水平第一次合格性考试历史真题卷
- 高标准农田施工组织设计(全)
- 迎接重大活动和检查评比的保障措施
- 总包对分包的管理措施(六大方面)
- 项目式学习评价量表
- 锅炉保温施工方案
- 《四川省柑橘出口影响因素研究(论文)》10000字
- 行测答题卡模板
- GB/T 28920-2012教学实验用危险固体、液体的使用与保管
- 多维阅读第14级 Ollie and Ruby 奥利和鲁比
- 石化行业八大高风险作业安全规范培训课件
评论
0/150
提交评论