版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西大学附属中学2025届高考冲刺模拟数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则的大小关系为()A. B. C. D.2.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度3.已知函数是奇函数,则的值为()A.-10 B.-9 C.-7 D.14.的展开式中的系数为()A.-30 B.-40 C.40 D.505.已知复数,若,则的值为()A.1 B. C. D.6.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()A.58厘米 B.63厘米 C.69厘米 D.76厘米7.执行如图所示的程序框图后,输出的值为5,则的取值范围是().A. B. C. D.8.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根9.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是()A.有99%以上的把握认为“学生性别与中学生追星无关”B.有99%以上的把握认为“学生性别与中学生追星有关”C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”10.已知复数满足(其中为的共轭复数),则的值为()A.1 B.2 C. D.11.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件12.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.14.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________.15.已知复数(为虚数单位),则的模为____.16.(x+y)(2x-y)5的展开式中x3y3的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.18.(12分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.19.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)设,求的前100项和.20.(12分)已知在四棱锥中,平面,,在四边形中,,,,为的中点,连接,为的中点,连接.(1)求证:.(2)求二面角的余弦值.21.(12分)已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.22.(10分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.2、D【解析】
先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.3、B【解析】
根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.4、C【解析】
先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.5、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.6、B【解析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.7、C【解析】
框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.8、A【解析】
只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.9、B【解析】
通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.10、D【解析】
按照复数的运算法则先求出,再写出,进而求出.【详解】,,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.11、A【解析】
根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.12、A【解析】
求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率.【详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得.故选A.【点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.二、填空题:本题共4小题,每小题5分,共20分。13、20.2【解析】
分别求出随机变量ξ1和ξ2的分布列,根据期望和方差公式计算得解.【详解】设a,b∈{1,2,1,4,5},则p(ξ1=a),其ξ1分布列为:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分别为:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案为:2,0.2.【点睛】此题考查随机变量及其分布,关键在于准确求出随机变量取值的概率,根据公式准确计算期望和方差.14、【解析】
设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即,因为,所以,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.15、【解析】,所以.16、40【解析】
先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)根据,求导,令,用导数法求其最小值.设研究在处左正右负,求导,分,,三种情况讨论求解.【详解】(1)因为,所以,令,则,所以是的增函数,故,即.因为所以,①当时,,所以函数在上单调递增.若,则若,则所以函数的单调递增区间是,单调递减区间是,所以在处取得极小值,不符合题意,②当时,所以函数在上单调递减.若,则若,则所以的单调递减区间是,单调递增区间是,所以在处取得极大值,符合题意.③当时,,使得,即,但当时,即所以函数在上单调递减,所以,即函数)在上单调递减,不符合题意综上所述,的取值范围是【点睛】本题主要考查导数与函数的单调性和极值,还考查了转化化归的思想和运算求解的能力,属于难题.18、(1)(2)【解析】
(1)由数列是等差数列,所以,解得,又由,解得,即可求得数列的通项公式;(2)由(1)得,利用乘公比错位相减,即可求解数列的前n项和.【详解】(1)由题意,数列是等差数列,所以,又,,由,得,所以,解得,所以数列的通项公式为.(2)由(1)得,,,两式相减得,,即.【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.19、(1)证明见解析;(2).【解析】
(1)利用已知条件化简出,当时,,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项和.【详解】解:(1)由题意知,即,①当时,由①式可得;又时,有,代入①式得,整理得,∴是首项为1,公差为1的等差数列.(2)由(1)可得,∵是各项都为正数,∴,∴,又,∴,则,,即:.∴的前100项和.【点睛】本题考查数列递推关系的应用,通项公式的求法以及裂项相消法求和,考查分析解题能力和计算能力.20、(1)见解析;(2)【解析】
(1)连接,证明,得到面,得到证明.(2)以,,所在直线分别为,,轴建立空间直角坐标系,为平面的法向量,平面的一个法向量为,计算夹角得到答案.【详解】(1)连接,在四边形中,,平面,面,,,面,又面,,又在直角三角形中,,为的中点,,,面,面,.(2)以,,所在直线分别为,,轴建立空间直角坐标系,,,,,,,设为平面的法向量,,,,,令,则,,,同理可得平面的一个法向量为.设向量与的所成的角为,,由图形知,二面角为锐二面角,所以余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.21、(Ⅰ);(Ⅱ)面积的最大值为,此时直线的方程为.【解析】
(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用(表示原点到直线的距离)表示面积,最后利用基本不等式求解最值.【详解】解:(Ⅰ)由定义法可得,点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版固定期限劳动合同
- 2024年电梯维保分包商安全规范协议版B版
- 2024年校园食堂餐饮服务承包合同
- 2024年股权转让及受让协议
- 2024年航空公司机票预订系统升级外包服务合同
- 石棉相关企业的研发与创新能力提升与管理实践考核试卷
- 数字逻辑课程设计老虎机
- 电气设备课程设计
- 2025年N1叉车司机理论考试1000题及答案
- 移动通信课程设计论文
- 手术供应室培训课件总结
- 车辆采购投标方案(技术方案)
- 湖南省2022-2023学年七年级上学期语文期末试卷(含答案)
- 胆结石 健康宣教
- 发运工作总结
- 共享设备行业分析
- 个人垫资合同
- GB/T 10739-2023纸、纸板和纸浆试样处理和试验的标准大气条件
- 铁三角管理办法(试行)
- 高考小说阅读分类导练:诗化小说(知识导读+强化训练+答案解析)
- 设立法律咨询服务公司市场研究报告
评论
0/150
提交评论