下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5页共5页12.1全等三角形教学设计教学目标1.知道全等形和全等三角形的概念及性质,能够准确辨认全等三角形的对应元素。2.在图形变换以及操作的过程中发展学生的空间观念,培养学生的几何直觉.3.经历观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.教学重点探究全等三角形的性质.教学难点掌握两个全等形的对应边,对应角.教学过程导入新课1.观察下面各组图形,说说他们有什么共同特点.推进新课归纳总结:全等形的定义:能够完全重合的两个图形叫做全等形.全等形的性质:如果两个图形全等,它们的形状和大小一定都相等.2.下面哪些图形是全等形?(2)(3)(4)(5)(6)(8)(9)(10)(11)(12)解:(2)和(7)、(3)和(9)、(5)和(12)、(6)和(10)3.全等三角形:能够完全重合的两个三角形叫_全等三角形__.全等三角形的对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.其中点A和_点D_,点B和_点E_,点C和_点F_是对应顶点.AB和_DE_,BC和_EF_,AC和__DF_是对应边.∠A和_∠D__,∠B和_∠E_,∠C和_∠F_是对应角.全等的表示方法:“全等”用符号“≌”表示,读作“全等于”.注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.找一找下列全等图形的对应元素.解:点A和点D,点B和点E,点C和点F是对应顶点.AB和DE,BC和EF,AC和DF是对应边.∠A和∠D,∠B和∠1,∠2和_∠F是对应角.5.思考:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?归纳总结:一个图形经过平移、翻折、旋转后,_位置_变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.全等三角形的性质:全等三角形的对应边相等,对应角相等.用几何语言表述:∵△ABC≌△DEF,∴AB=DE,BC=EF,AC=DF(全等三角形的对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等).例已知:如图,△ABC≌△DEF.(1)若DF=10cm,则AC的长为__10cm_;(2)若∠A=100°,则∠D的度数为_100°_;(3)若∠A=100°,∠B=30°,求∠F的度数.解:∵∠A=100°,∠B=30°,∴∠C=180°-∠A-∠B=50°.∵△DEF≌△ABC,∴∠F=∠C=50°(全等三角形的对应角相等).当堂练习1.判断题:(1)全等三角形的对应边相等,对应角相等.(√)(2)全等三角形的周长相等,面积也相等.(√)(3)面积相等的三角形是全等三角形.(×)(4)周长相等的三角形是全等三角形.(×)2.说出图中两个全等三角形的对应边、对应角。解:图(1),△ABC和△DBC的对应边:AB和DB,AC和DC,BC和BC;对应角:∠BAC和∠BDC,∠ABC和∠DBC,∠ACB和∠DCB;图(2)中△ABC和△ADE的对应边:AB和AD,AC和AE,BC和DE;对应角:∠BAC和∠DAE,∠B和∠D,∠C和∠E.3.如图,△OCA≌△OBD,点C和点B,点A和点D是对应顶点。说出这两个三角形中相等的边和角。解:相等的边有:AC=DB,AO=DO,CO=BO.相等的角有:∠C=∠B,∠A=∠D,∠AOC=∠DOB.4.如图,△ABC≌△ADE,则AB=__AD__,∠E=__∠C__.若∠BAE=120°,∠BAD=40°,则∠BAC=__80°__.四、课堂小结谈谈你本节课的收获.五、作业布置见精准作业布置单.六、板书设计12.1全等三角形右边板书1.全等形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肇庆学院《管理会计模拟实验》2023-2024学年第一学期期末试卷
- 企业员工绩效质量个人贡献度评价体系
- 保险行业投资分析模板
- 20XX年度绩效总结模板
- 房地产经纪操作实务-2019年房地产经纪人协理《房地产经纪操作实务》真题汇编
- 人资行政岗位述职报告模板
- 有关保护环境的调查报告
- 二零二五版带利息支付的商业汇票贴现合同样本3篇
- 陕西省西安市部分学校2024-2025学年高一上学期第四次阶段性检测化学试卷(含答案)
- 二零二五年度高速公路钢筋材料供应协议3篇
- 2025寒假散学典礼(休业式)上校长精彩讲话:以董宇辉的创新、罗振宇的坚持、马龙的热爱启迪未来
- 安徽省示范高中2024-2025学年高一(上)期末综合测试物理试卷(含答案)
- 安徽省合肥市包河区2023-2024学年九年级上学期期末化学试题
- 《酸碱罐区设计规范》编制说明
- PMC主管年终总结报告
- 售楼部保安管理培训
- 仓储培训课件模板
- 2025届高考地理一轮复习第七讲水循环与洋流自主练含解析
- GB/T 44914-2024和田玉分级
- 2024年度企业入驻跨境电商孵化基地合作协议3篇
- Art285 中国视觉艺术史
评论
0/150
提交评论