中考数学二轮复习冲刺第07讲 平面直角坐标系与一次函数、反比例函数(知识精讲+真题练+模拟练+自招练)(解析版)_第1页
中考数学二轮复习冲刺第07讲 平面直角坐标系与一次函数、反比例函数(知识精讲+真题练+模拟练+自招练)(解析版)_第2页
中考数学二轮复习冲刺第07讲 平面直角坐标系与一次函数、反比例函数(知识精讲+真题练+模拟练+自招练)(解析版)_第3页
中考数学二轮复习冲刺第07讲 平面直角坐标系与一次函数、反比例函数(知识精讲+真题练+模拟练+自招练)(解析版)_第4页
中考数学二轮复习冲刺第07讲 平面直角坐标系与一次函数、反比例函数(知识精讲+真题练+模拟练+自招练)(解析版)_第5页
已阅读5页,还剩113页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第07讲平面直角坐标系与一次函数、反比例函数(知识精讲+真题练+模拟练+自招练)【考纲要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.【知识导图】【考点梳理】考点一、平面直角坐标系1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点点P(x,y)在第一象限;点P(x,y)在第二象限;点P(x,y)在第三象限;点P(x,y)在第四象限;点P(x,y)在x轴上,x为任意实数;点P(x,y)在y轴上,y为任意实数;点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0).3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等;点P(x,y)在第二、四象限夹角平分线上x与y互为相反数.4.和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同;位于平行于y轴的直线上的各点的横坐标相同.5.关于x轴、y轴或原点对称的点的坐标的特征点P与点p′关于x轴对称横坐标相等,纵坐标互为相反数;点P与点p′关于y轴对称纵坐标相等,横坐标互为相反数;点P与点p′关于原点对称横、纵坐标均互为相反数.6.点P(x,y)到坐标轴及原点的距离(1)点P(x,y)到x轴的距离等于;(2)点P(x,y)到y轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数函数的概念设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法.4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.(2)正比例函数y=kx(k≠0)的图象:过(0,0),(1,K)两点的一条直线.(3)正比例函数y=kx(k≠0)的性质①当k>0时,图象经过第一、三象限,y随x的增大而增大;②当k<0时,图象经过第二、四象限,y随x的增大而减小.2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.(2)一次函数y=kx+b(k≠0)的图象(3)一次函数y=kx+b(k≠0)的图象的性质一次函数y=kx+b的图象是经过(0,b)点和点的一条直线.当k>0时,y随x的增大而增大;②当k<0时,y随x的增大而减小.3.反比例函数及其图象性质(1)定义:一般地,形如(为常数,)的函数称为反比例函数.三种形式:(k≠0)或(k≠0)或xy=k(k≠0).(2)反比例函数解析式的特征:①等号左边是函数,等号右边是一个分式.分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1;②比例系数;③自变量的取值为一切非零实数;④函数的取值是一切非零实数.(3)反比例函数的图象①图象的画法:描点法列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数);描点(由小到大的顺序);连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是和)和中心对称图形(对称中心是坐标原点).④反比例函数()中比例系数的几何意义是:过双曲线()上任意点引轴、轴的垂线,所得矩形面积为.(4)反比例函数性质:反比例函数k的符号k>0k<0图像性质①x的取值范围是x0,y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y随x的增大而减小.①x的取值范围是x0,y的取值范围是y0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y随x的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出)(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系.【典型例题】题型一、坐标平面有关的计算例1.已知点A(a,-5),B(8,b),根据下列要求确定a,b的值.(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点都在一、三象限的角平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数;

(2)关于原点对称,x变为相反数,y变为相反数;

(3)AB∥x轴,即两点的纵坐标不变即可;

(4)在一、三象限两坐标轴夹角的平分线上的点的横纵坐标相等,即可得出a,b.【答案与解析】(1)点A(a,-5),B(8,b)两点关于y轴对称,则a=-8且b=-5.(2)点A(a,-5),B(8,b)两点关于原点对称,则a=-8且b=5.(3)AB∥x轴,则a≠8且b=-5.(4)A,B两点都在一、三象限的角平分线上,则a=-5且b=8.【总结升华】运用对称点的坐标之间的关系是解答本题的关键.在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.【变式】已知点A的坐标为(-2,-1).(1)如果B为x轴上一点,且,求B点的坐标;(2)如果C为y轴上的一点,并且C到原点的距离为3,求线段AC的长;(3)如果D为函数y=2x-1图象上一点,,求D点的坐标.【答案】(1)设B(x,0),由勾股定理得.解得x1=-5,x2=1.经检验x1=-5,x2=1均为原方程的解.∴B点的坐标为(-5,0)或(1,0).(2)设C(0,y),∵OC=3,∴C点的坐标为(0,3)或(0,-3).∴由勾股定理得;或.(3)设D(x,2x-1),AD=,由勾股定理得.解得,.经检验,,均为原方程的解.∴D点的坐标为(,)或(-1,-3).例2.已知某一函数图象如图所示.(1)求自变量x的取值范围和函数y的取值范围;(2)求当x=0时,y的对应值;(3)求当y=0时,x的对应值;(4)当x为何值时,函数值最大;(5)当x为何值时,函数值最小;(6)当y随x的增大而增大时,求x的取值范围;(7)当y随x的增大而减小时,求x的取值范围.【思路点拨】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【答案与解析】(1)x的取值范围是-4≤x≤4,y的取值范围是-2≤y≤4;(2)当x=0时,y=3;(3)当y=0时,x=-3或-1或4;(4)当x=1时,y的最大值为4;(5)当x=-2时,y的最小值为-2;(6)当-2≤x≤1时,y随x的增大而增大;(7)当-4≤x≤-2或1≤x≤4时,y随x的增大而减小.【总结升华】本题主要是培养学生的识图能力.【变式1】下图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()【答案】理解题意,读图获取信息是关键,由图可知某段时间内韩老师离家距离是常数,联想到韩老师是在家为圆心的弧上散步,分析四个选项知D项符合题意.答案:D【变式2】下列图形中的曲线不表示y是x的函数的是().【答案】C.题型二、一次函数例3.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【思路点拨】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.【答案与解析】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.【总结升华】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.【变式1】(1)直线y=2x+1向下平移2个单位,再向右平移2个单位后的直线的解析式是________.(2)直线y=2x+1关于x轴对称的直线的解析式是________;直线y=2x+l关于y轴对称的直线的解析式是_________;直线y=2x+1关于原点对称的直线的解析式是_________.(3)如图所示,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB平移后经过(3,4)点,则平移后的直线的解析式是________.【答案】(1)y=2x-5;(2)y=-2x-1,y=-2x+1,y=2x-1;(3)y=2x-2.【变式2】某地夏天旱情严重.该地10号、15号的人日均用水量的变化情况如图所示.若该地10号、15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为()A.23B.24C.25D.26【答案】解析:设图中直线解析式为y=kx+b,将(10,18),(15,15)代入解析式得解得∴.由题意知,,解得,∴送水号数应为24.答案:B题型三、反比例函数例4.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数的图象交于A(2,3)、B(﹣3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出OP的长.【思路点拨】(1)用待定系数法即可确定出反比例函数解析式;再将B坐标代入反比例解析式中求出n的值,确定出B坐标,根据A与B坐标即可确定出一次函数解析式;(2)如图所示,对于一次函数解析式,令x=0求出y的值,确定出C坐标,得到OC的长,三角形ABP面积由三角形ACP面积与三角形BCP面积之和求出,由已知的面积求出PC的长,即可求出OP的长.【答案与解析】解:(1)∵反比例函数的图象经过点A(2,3),∴m=6.∴反比例函数的解析式是y=,∵B点(﹣3,n)在反比例函数y=的图象上,∴n=﹣2,∴B(﹣3,﹣2),∵一次函数y=kx+b的图象经过A(2,3)、B(﹣3,﹣2)两点,∴,解得:,∴一次函数的解析式是y=x+1;(2)对于一次函数y=x+1,令x=0求出y=1,即C(0,1),OC=1,根据题意得:S△ABP=PC×2+PC×3=5,解得:PC=2,则OP=OC+CP=1+2=3或OP=CP﹣OC=2﹣1=1.【总结升华】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.【变式】已知正比例函数(为常数,)的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.【答案】(1)由题意,得, 解得.所以正比例函数的表达式为,反比例函数的表达式为. 解,得.由,得. 所以两函数图象交点的坐标为(2,2),. (2)因为反比例函数的图象分别在第一、三象限内,的值随值的增大而减小, 所以当时,. 当时,. 当时,因为,,所以. 题型四、函数综合应用例5.如图,直线(>0)与双曲线(>0)在第一象限的一支相交于A、B两点,与坐标轴交于C、D两点,P是双曲线上一点,且.(1)试用、表示C、P两点的坐标;(2)若△POD的面积等于1,试求双曲线在第一象限的一支的函数解析式;(3)若△OAB的面积等于,试求△COA与△BOD的面积之和.【思路点拨】(1)根据直线的解析式求得点D的坐标,再根据等腰三角形的性质即可求得点P的横坐标,进而根据双曲线的解析式求得点P的纵坐标;

(2)①要求双曲线的解析式,只需求得xy值,显然根据△POD的面积等于1,即可求解;

②由①中的解析式可以进一步求得点B的纵坐标,从而求得直线的解析式,然后求得点B的坐标,即可计算△COA与△BOD的面积之和.【答案与解析】(1)C(0,),D(,0)∵PO=PD∴,∴P(,)(2)∵,有,化简得:=1∴(>0)(3)设A(,),B(,),由得:,又得,即得,再由得,从而,,从而推出,所以.故【总结升华】利用面积建立方程求解析式中的字母参数是常用方法.求两函数图像的交点坐标,即解由它们的解析式组成的方程组.【变式1】如图所示是一次函数y1=kx+b和反比例函数的图象,观察图象写出y1>y2时x的取值范围________.【答案】利用图象比较函数值大小时,要看对于同一个自变量的取值,哪个函数图象在上面,哪个函数的函数值就大,当y1>y2时,-2<x<0或x>3.答案:-2<x<0或x>3【变式2】已知函数,m为何值时,(1)y是x的正比例函数,且y随x的增大而增大?(2)函数的图象是位于第二、四象限的双曲线?【答案】(1)要符合题意,m需满足解得∴m=1.(2)欲符合题意,m需满足解得∴.例6.已知直线(n是不为零的自然数).当n=1时,直线与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2,…,依此类推,直线与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn.(1)求的面积S1;(2)求S1+S2+S3+…+S6的面积.【思路点拨】此题是一道规律探索性题目,先根据函数解析式的通项公式得出每一个函数解析式,画出图象,总结出规律,便可解答.【答案与解析】解:直线,∴,.(1).(2)由得,【总结升华】借助直觉思维或对问题的整体把握运用归纳、概括、推理等思想获得合理的猜测.【中考过关真题练】一.选择题(共9小题)1.(2022•攀枝花)若点A(﹣a,b)在第一象限,则点B(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】直接利用第一象限内点的坐标特点得出a、b的符号,进而得出答案.【解答】解:∵点A(﹣a,b)在第一象限内,∴﹣a>0,b>0,∴a<0,∴点B(a,b)所在的象限是:第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(2022•攀枝花)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y1(km)与时间x(h)之间的函数关系:折线OABN表示轿车离西昌距离y2(km)与时间x(h)之间的函数关系,则以下结论错误的是()A.货车出发1.8小时后与轿车相遇 B.货车从西昌到雅安的速度为60km/h C.轿车从西昌到雅安的速度为110km/h D.轿车到雅安20分钟后,货车离雅安还有20km【分析】根据“速度=路程÷时间”分别求出两车的速度,进而得出轿车出发的时间,再对各个选项逐一判断即可.【解答】解:由题意可知,货车从西昌到雅安的速度为:240÷4=60(km/h),故选项B不合题意;轿车从西昌到雅安的速度为:(240﹣75)÷(3﹣1.5)=110(km/h),故选项C不合题意;轿车从西昌到雅安所用时间为:240÷110=(小时),3﹣=(小时),设货车出发x小时后与轿车相遇,根据题意得:,解得x=1.8,∴货车出发1.8小时后与轿车相遇,故选项A不合题意;轿车到雅安20分钟后,货车离雅安还有60×=40(km),故选项D符合题意.故选:D.【点评】此题为一次函数的应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.3.(2022•阜新)如图,平面直角坐标系中,在直线y=x+1和x轴之间由小到大依次画出若干个等腰直角三角形(图中所示的阴影部分),其中一条直角边在x轴上,另一条直角边与x轴垂直,则第100个等腰直角三角形的面积是()A.298 B.299 C.2197 D.2198【分析】根据一次函数图象上点的坐标特征,可得第1个等腰直角三角形的直角边长,求出第1个等腰直角三角形的面积,用同样的方法求出第2个等腰直角三角形的面积,第3个等腰直角三角形的面积,找出其中的规律即可求出第100个等腰直角三角形的面积.【解答】解:当x=0时,y=x+1=1,根据题意,第1个等腰直角三角形的直角边长为1,第1个等腰直角三角形的面积为=,当x=1时,y=x+1=2,∴第2个等腰直角三角形的直角边长为2,第2个等腰直角三角形的面积为=2,当x=3时,y=x+1=4,∴第3个等腰直角三角形的直角边长为4,第3个等腰直角三角形的面积为=8,依此规律,第100个等腰直角三角形的面积为=2197,故选:C.【点评】本题考查了一次函数图象上点的坐标特征与规律的综合,涉及等腰直角三角形的性质,找出规律是解题的关键.4.(2022•攀枝花)如图,正比例函数y=k1x与反比例函数y=的图象交于A(1,m)、B两点,当k1x≤时,x的取值范围是()A.﹣1≤x<0或x≥1 B.x≤﹣1或0<x≤1 C.x≤﹣1或x≥1 D.﹣1≤x<0或0<x≤1【分析】根据反比例函数的对称性求得B点的坐标,然后根据图象即可求得.【解答】解:∵正比例函数y=k1x与反比例函数y=的图象交于A(1,m)、B两点,∴B(﹣1,﹣m),由图象可知,当k1x≤时,x的取值范围是﹣1≤x<0或x≥1,故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用函数的对称性求得B点的坐标,以及数形结合思想的运用是解题的关键.5.(2022•阜新)已知反比例函数y=(k≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点()A.(4,2) B.(1,8) C.(﹣1,8) D.(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点(﹣2,4),∴k=﹣2×4=﹣8,A、∵4×2=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;B、∵1×8=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;C、﹣1×8=﹣8,∴此点在反比例函数的图象上,故本选项正确;D、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误.故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数y=(k≠0)中,k=xy为定值是解答此题的关键.6.(2022•铜仁市)如图,在矩形ABCD中,A(﹣3,2),B(3,2),C(3,﹣1),则D的坐标为()A.(﹣2,﹣1) B.(4,﹣1) C.(﹣3,﹣2) D.(﹣3,﹣1)【分析】先根据A、B的坐标求出AB的长,则CD=AB=6,并证明AB∥CD∥x轴,同理可得AD∥BC∥y轴,由此即可得到答案.【解答】解:∵A(﹣3,2),B(3,2),∴AB=6,AB∥x轴,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD∥x轴,同理可得AD∥BC∥y轴,∵点C(3,﹣1),∴点D的坐标为(﹣3,﹣1),故选:D.【点评】本题主要考查了坐标与图形,矩形的性质,熟知矩形的性质是解题的关键.7.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A. B. C. D.【分析】如图,作CH⊥AB于点H,可知CH=1.分当0≤x≤1或1<x≤3或3<x≤4三种情形,分别求出重叠部分的面积,即可得出图象.【解答】解:如图,作CH⊥AB于点H,∵AB=2,△ABC是等腰直角三角形,∴CH=1,当0≤x≤1时,y=×2x•x=x2,当1<x≤3时,y==1,当3<x≤4时,y=1﹣=﹣(x﹣3)2+1,故选:B.【点评】本题主要考查了动点问题的函数图象,二次函数的图象,等腰直角三角形的性质等知识,分别求出三种情形下函数解析式是解题的关键.8.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1 B.2 C.4 D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P在直线y=2上,如图所示,当P为直线y=2与直线y2的交点时,m取最大值,当P为直线y=2与直线y1的交点时,m取最小值,∵y2=﹣x+3中令y=2,则x=1,y1=x+3中令y=2,则x=﹣1,∴m的最大值为1,m的最小值为﹣1.则m的最大值与最小值之差为:1﹣(﹣1)=2.故选:B.【点评】本题考查一次函数的性质,要求符合题意的m值,关键要理解当P在何处时m存在最大值与最小值,由于P的纵坐标为2,故作出直线y=2有助于判断P的位置.9.(2022•内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=和y=的图象交于P、Q两点.若S△POQ=15,则k的值为()A.38 B.22 C.﹣7 D.﹣22【分析】利用k的几何意义解题即可.【解答】解:∵直线l∥y轴,∴∠OMP=∠OMQ=90°,∴S△OMP=×8=4,S△OMQ=﹣k.又S△POQ=15,∴4﹣k=15,即k=11,∴k=﹣22.故选:D.【点评】本题主要考查了反比例函数图象的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.二.填空题(共3小题)10.(2022•黑龙江)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=x交于点B1,B2,B3,B4…记△OA1B1,△OA2B2,△OA3B3,△OA4B4…的面积分别为S1,S2,S3,S4…则S2022=24041.【分析】根据已知先求出OA2,OA3,OA4的长,再代入直线y=x中,分别求出A1B1,A2B2,A3B3,A4B4,然后分别计算出S1,S2,S3,S4,再从数字上找规律进行计算即可解答.【解答】解:∵OA1=1,OA2=2OA1,∴OA2=2,∵OA3=2OA2,∴OA3=4,∵OA4=2OA3,∴OA4=8,把x=1代入直线y=x中可得:y=,∴A1B1=,把x=2代入直线y=x中可得:y=2,∴A2B2=2,把x=4代入直线y=x中可得:y=4,∴A3B3=4,把x=8代入直线y=x中可得:y=8,∴A4B4=8,∴S1=OA1•A1B1=×1×=×20×(20×),S2=OA2•A2B2=×2×2=×21×(21×),S3=OA3•A3B3=×4×4=×22×(22×),S4=OA4•A4B4=×8×8=×23×(23×),...∴S2022=×22021×(22021×)=24041,故答案为:24041.【点评】本题考查了规律型:点的坐标,含30度角的直角三角形,根据已知分别求出S1,S2,S3,S4的值,然后从数字上找规律是解题的关键.11.(2022•遵义)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=.当AM+BN的值最小时,CM的长为2﹣.【分析】过点A作AH⊥BC于点H.设AN=CM=x.AM+BN=+,欲求AM+BN的最小值,相当于在x轴上寻找一点P(x,0),到E(1,1),F(0,)的距离和的最小值,如图1中,作点F关于x轴的对称点F′,当E,P,F′共线时,PE+PF的值最小,此时直线EF′的解析式为y=(+1)x﹣,求出点P的坐标,可得结论.【解答】解:过点A作AH⊥BC于点H.设AN=CM=x.∵AB=AC=,∠BAC=90°,∴BC==2,∵AH⊥BC,∴BH=AH=1,∴AH=BH=CH=1,∴AM+BN=+,欲求AM+BN的最小值,相当于在x轴上寻找一点P(x,0),到E(1,1),F(0,)的距离和的最小值,如图1中,作点F关于x轴的对称点F′,当E,P,F′共线时,PE+PF的值最小,此时直线EF′的解析式为y=(+1)x﹣,当y=0时,x=2﹣,∴AM+BN的值最小时,CM的值为2﹣,解法二:过点C作CE⊥CB,使得CE=AC,连接EM,过点A作AD⊥BC于点D.∵AB=AC=CE,∠BAN=∠ECM=90°,AN=CM,∴△BAN≌△ECM(SAS),∴BN=EM,∴AM+BN=AM+ME,∴当A,M,E共线时,AM+BN的值最小,∵AD∥EC,∴==,∴CM=×1=2﹣.故答案为:2﹣.【点评】本题考查等腰直角三角形的性质,轴对称最短问题,一次函数的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.12.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为(,0).【分析】连接OD,作DG⊥x轴,设点B(b,),D(a,),根据矩形的面积得出三角形BOD的面积,将三角形BOD的面积转化为梯形BEGD的面积,从而得出a,b的等式,将其分解因式,从而得出a,b的关系,进而在直角三角形BOD中,根据勾股定理列出方程,进而求得B,D的坐标,进一步可求得结果.【解答】解:如图,方法一:作DG⊥x轴于G,连接OD,设BC和OD交于I,设点B(b,),D(a,),由对称性可得:△BOD≌△BOA≌△OBC,∴∠OBC=∠BOD,BC=OD,∴OI=BI,∴DI=CI,∴=,∵∠CID=∠BIO,∴△CDI∽△BOI,∴∠CDI=∠BOI,∴CD∥OB,∴S△BOD=S△AOB=S矩形AOCB=,∵S△BOE=S△DOG==3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,∴S梯形BEGD=S△BOD=,∴•(a﹣b)=,∴2a2﹣3ab﹣2b2=0,∴(a﹣2b)•(2a+b)=0,∴a=2b,a=﹣(舍去),∴D(2b,),即:(2b,),在Rt△BOD中,由勾股定理得,OD2+BD2=OB2,∴[(2b)2+()2]+[(2b﹣b)2+(﹣)2]=b2+()2,∴b=,∴B(,2),D(2,),∵直线OB的解析式为:y=2x,∴直线DF的解析式为:y=2x﹣3,当y=0时,2﹣3=0,∴x=,∴F(,0),∵OE=,OF=,∴EF=OF﹣OE=,∴=,方法二:如图,连接BF,BD,作DG⊥x轴于G,直线BD交x轴于H,由上知:DF∥OB,∴S△BOF=S△BOD=,∵S△BOE=|k|=3,∴==,设EF=a,FG=b,则OE=2a,∴BE=,OG=3a+b,DG=,∵△BOE∽△DFG,∴=,∴=,∴a=b,a=﹣(舍去),∴D(4a,),∵B(2a,),∴==,∴GH=EG=2a,∵∠ODH=90°,DG⊥OH,∴△ODG∽△DHG,∴,∴,∴a=,∴3a=,∴F(,0)故答案为:,(,0).【点评】本题考查了矩形性质,轴对称性质,反比例函数的“k”的几何含义,勾股定理,一次函数及其图象性质,分解因式等知识,解决问题的关键是变形等式,进行分解因式.三.解答题(共11小题)13.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<,请直接写出a的取值范围.【分析】(1)根据“倾斜系数”k的定义直接计算即可;(2)①根据“倾斜系数”k的定义分情况得出结论即可;②根据“倾斜系数”k的定义求出P点坐标,进而求出OP的值即可;(3)根据k的取值,分情况求出a的取值范围即可.【解答】解:(1)由题意知,k==3,即点P(6,2)的“倾斜系数”k的值为3;(2)①∵点P(a,b)的“倾斜系数”k=2,∴=2或=2,即a=2b或b=2a,∴a和b的数量关系为a=2b或b=2a;②由①知,a=2b或b=2a∵a+b=3,∴或,∴OP==;(3)由题意知,满足条件的P点在直线y=x和直线y=x之间,①当P点与D点重合时,且k=时,P点在直线y=x上,a有最小临界值,如图:此时a<b,连接OD,延长DA交x轴于E,此时=,则,解得a=,此时B点的坐标为(,),且k==∴a>+1;②当P点与B点重合时,且k=时,P点在直线y=x上,a有最小临界值,如图:此时a>b,连接OB,延长CB交x轴于F,此时=,则=,解得a=3+,此时D(,),且k==,∴a>+3;综上所述,若点P的“倾斜系数”k<,则a>+3.【点评】本题主要考查一次函数的图象和性质,熟练掌握一次函数的性质,正确理解“倾斜系数”的定义是解题的关键.14.(2022•黑龙江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)mm﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点评】本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,(3)要根据一次项系数的情况分情况讨论.15.(2022•六盘水)如图,正比例函数y=x与反比例函数y=的图象交于A,B两点.(1)求A,B两点的坐标;(2)将直线y=x向下平移a个单位长度,与反比例函数在第一象限的图象交于点C,与x轴交于点D,与y轴交于点E,若=,求a的值.【分析】(1)根据正比例函数与反比例函数,即可求出两交点坐标;(2)根据直线y=x向下平移a个单位长度,可得直线CD解析式为:y=x﹣a,所以点D的坐标为(a,0),过点C作CF⊥x轴于点F,根据CF∥OE,可得==,所以FD=a,可得点C的坐标是(a,a).然后利用反比例函数即可解决问题.【解答】解:(1)∵正比例函数y=x与反比例函数y=的图象交于A、B两点,∴x=,解得x=±2,∴A(2,2),B(﹣2,﹣2);(2)∵直线y=x向下平移a个单位长度,∴直线CD解析式为:y=x﹣a,当y=0时,x=a,∴点D的坐标为(a,0),如图,过点C作CF⊥x轴于点F,∴CF∥OE,∴==,∴FD=a,∴OF=OD+FD=a,∵点C在直线CD上,∴y=a﹣a=a,∴CF=a,∴点C的坐标是(a,a).∵点C在反比例函数y=的图象上,∴a×a=4,解得a=±3(负值舍去),∴a=3.【点评】本题是一次函数与反比例函数的交点问题,考查了一次函数图象上点的坐标特征,反比例函数的中心对称性,熟练掌握反比例函数的性质是解题的关键.16.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.【分析】(1)将点A坐标分别代入一次函数解析式和反比例函数解析式可求解;(2)分两种情况讨论,由相似三角形的性质和勾股定理可求解;(3)分别求出BP,AP,BQ的解析式,联立方程组可求解.【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,∴4=﹣2a+6,∴a=1,∴点A(1,4),∵反比例函数y=的图象过点A(1,4),∴k=1×4=4;∴反比例函数的解析式为:y=,联立方程组可得:,解得:,,∴点B(2,2);(2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,∴AE∥CF,∴△AEH∽△CFH,∴,当=时,则CF=2AE=2,∴点C(﹣2,﹣2),∴BC==4,当=2时,则CF=AE=,∴点C(﹣,﹣8),∴BC==,综上所述:BC的长为4或;(3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,∵直线y=﹣2x+6与y轴交于点E,∴点E(0,6),∵点B(2,2),∴BF=OF=2,∴EF=4,∵∠ABP=90°,∴∠ABF+∠FBN=90°=∠ABF+∠BEF,∴∠BEF=∠FBN,又∵∠EFB=∠BFN=90°,∴△EBF∽△BNF,∴,∴FN==1,∴点N(0,1),∴直线BN的解析式为:y=x+1,联立方程组得:,解得:,,∴点P(﹣4,﹣1),∴直线AP的解析式为:y=x+3,∵AP垂直平分BQ,∴设BQ的解析式为y=﹣x+4,∴x+3=﹣x+4,∴x=,∴点H(,),∵点H是BQ的中点,点B(2,2),∴点Q(﹣1,5).【点评】本题是反比例函数综合题,考查了一次函数的应用,反比例函数的应用,相似三角形的判定和性质,待定系数法等知识,灵活运用这些性质解决问题是解题的关键.17.(2022•河北)如图,平面直角坐标系中,线段AB的端点为A(﹣8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD,其中C(c,0).当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光.求此时整数m的个数.【分析】(1)设直线AB的解析式为y=kx+b,转化为方程组求解;(2)①把(2,0)代入函数解析式,可得结论;②寻找特殊点,利用待定系数法求解即可.【解答】解:(1)设直线AB的解析式为y=kx+b,把A(﹣8,19),B(6,5)代入,得,解得,∴直线AB的解析式为y=﹣x+11;(2)①由题意直线y=mx+n经过点(2,0),∴2m+n=0;②∵线段AB上的整数点有15个:(﹣8,19),(﹣7,18),(﹣6,17),(﹣5,16),(﹣4,15),(﹣3,14),(﹣2,13),(﹣1,12),(0,11),(1,10),(2,9),(3,8),(4,7),(5,6),(6,5).当射线CD经过(2,0),(﹣7,18)时,y=﹣2x+4,此时m=﹣2,符合题意,当射线CD经过(2,0),(﹣1,12)时,y=﹣4x+8,此时m=﹣4,符合题意,当射线CD经过(2,0),(1,10)时,y=﹣10x+20,此时m=﹣10,符合题意,当射线CD经过(2,0),(3,8)时,y=8x﹣16,此时m=8,符合题意,当射线CD经过(2,0),(5,6)时,y=2x﹣4,此时m=2,符合题意,其他点,都不符合题意.解法二:设线段AB上的整数点为(t,﹣t+11),则tm+n=﹣t+11,∵2m+n=0,∴(t﹣2)m=﹣t+11,∴m==﹣1+,∵﹣8≤t≤6,且t为整数,m也是整数,∴t﹣2=±1,±3,±9,∴t=1,m=﹣10,t=3,m=8,t=5,m=2,t=﹣1,m=﹣4,t=﹣7,m=﹣2,t=11,m=0(不符合题意舍去),综上所述,符合题意的m的值有5个【点评】本题属于一次函数综合题,考查了待定系数法,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.18.(2022•枣庄)为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天)3569……硫化物的浓度y(mg/L)4.52.72.251.5……(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)设AC的函数关系式为:y=kx+b,将A和C代入,从而求得k,b,进而求得的结果;(2)可推出x•y=13.5为定值,所以当x≥3时,y是x的反比例函数,进而求得结果;(3)将x=15代入反比例函数关系式,从而求得y的值,进而根据反比例函数图象性质,从而得出结论.【解答】解:(1)设线段AC的函数表达式为:y=kx+b,∴,∴,∴线段AC的函数表达式为:y=﹣2.5x+12(0≤x<3);(2)∵3×4.5=5×2.7=...=13.5,∴y是x的反比例函数,∴y=(x≥3);(3)该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L,理由如下:当x=15时,y==0.9,∵13.5>0,∴y随x的增大而减小,∴该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了求一次函数关系式,反比例函数及其图象的性质等知识,解决问题的关键是熟练掌握反比例函数及其图象性质.19.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.【分析】(1)将点A的坐标代入y=求得a,再把点A坐标代入y=求出k;(2)先求出A,B,C三点坐标,作CD⊥x轴于D,交AB于E,求出点E坐标,从而求得CE的长,进而求得三角形ABC的面积;(3)当AB为对角线时,先求出点P的纵坐标,进而代入反比例函数的解析式求得横坐标;当AB为边时,同样先求出点P的纵坐标,再代入y=求得点P的横坐标.【解答】解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CD⊥x轴于D,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴xA==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴yP=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),由yQ′﹣yB=yP′﹣yA得,0﹣1=yP′﹣3,∴yP′=2,当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).【点评】本题主要考查了求反比例函数的解析式,结合一次函数的解析式求点的坐标,结合平行四边形的性质求点的坐标等知识,解决问题的关键是画出图形,全面分类.20.(2022•攀枝花)如图,直线y=x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD于点E,连结BE.(1)证明:=;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)【分析】(1)证明△BDC∽△EDO,可得结论;(2)令x=0和y=0可得OA和OB的长,根据等角的三角函数得:===,设OD=3m,CD=4m,证明△CDB∽△AOB,列比例式可得BD=3m,从而可求得m=1,计算CD和BD的长,代入(1)中的比例式可得结论;(3)根据OA=OF可知:F在以O为圆心,以OA为半径的半圆上运动,并确定当BF在y轴上时,BF的值最小,从而得结论.【解答】(1)证明:∵OC⊥OE,∴∠COE=90°,∴∠AOB=∠COE=90°,∵∠OCD=∠OAB,∴∠ABO=∠CEO,∵∠BDC=∠EDO,∴△BDC∽△EDO,∴=;(2)解:当x=0时,y=6,∴B(0,6),∴OB=6,当y=0时,x+6=0,∴x=﹣8,∴A(﹣8,0),∴OA=8,如图2,∠BDE=90°,∴∠ODC=∠BDE=90°,∵∠OCD=∠OAB,∴tan∠OCD=tan∠OAB,∴===,∴设OD=3m,CD=4m,∵∠CDB=∠AOB=90°,∴CD∥OA,∴△CDB∽△AOB,∴=,即=,∴BD=3m,∴OB=BD+OD=3m+3m=6,∴m=1,∴BD=3,CD=4,由(1)知:=,∴=,∴DE=;(3)解:如图3,由对称得:OA=OF,∵动点F在以O为圆心,以OA为半径的半圆AFA'上运动,∴当F在y轴上,且在B的上方时,BF的值最小,如图4,此时BF=OF﹣OB=8﹣6=2,即BF的最小值是2.【点评】本题是一次函数的综合题,考查了轴对称最短问题,三角函数,相似三角形的判定和性质,一次函数与坐标轴的交点,动点运动轨迹等知识,解题的关键是学会用相似或三角函数求边的长,学会利用数形结合的思想确定动点运动轨迹问题.21.(2022•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为m(用含有m的代数式表示);②当0<m<时,S与m的关系式为m2;③当S=时,m的值为或15﹣2.【分析】(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;(2)①过点C作CF⊥C′D′,易得△CFC′∽△AOB,可用m表达CF和C′F的长度,进而可表达点C′,D′的坐标,由点C的坐标可得出直线OC的解析式,代入可得点E的坐标;②根据题意可知,当0<m<时,点D′未到直线OC上,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m<时,当<m<5时,当5<m<10时,当10<m<15时,S与m的关系式,分别令S=,建立方程,求出m即可.【解答】解:(1)将点B(0,9),C(8,3)的坐标代入直线y=kx+b,∴,解得.∴直线AB的函数表达式为:y=﹣x+9;(2)①由(1)知直线AB的函数表达式为:y=﹣x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF∥OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=m,C′F=m,∴C′(8﹣m,3+m),A′(12﹣m,m),D′(8﹣m,m),∵C(8,3),∴直线OC的解析式为:y=x,∴E(8﹣m,3﹣m).∴C′E=3+m﹣(3﹣m)=m.故答案为:m.②法一、当点D′落在直线OC上时,有m=(8﹣m),解得m=,∴当0<m<时,点D′未到直线OC,此时S=C′E•CF=•m•m=m2;法二、∵C′D′∥BO,∴△CC′E∽△CBO,∴=()2,即=,∴S=m2.故答案为:m2.③法一、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(m,m),∴D′E=m﹣(3﹣m)=m﹣3,D′M=m﹣(8﹣m)=m﹣8;∴S=m2﹣•(m﹣3)•(m﹣8)=﹣m2+m﹣12,令﹣m2+m﹣12=;整理得,3m2﹣30m+70=0,解得m=或m=>5(舍);当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m≤15时,如图4,此时A′B=15﹣m,∴BN=(15﹣m),A′N=(15﹣m),∴S=•(15﹣m)•(15﹣m)=(15﹣m)2,令(15﹣m)2=,解得m=15+2>15(舍)或m=15﹣2.法二、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);(同法一)当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∵S△A′C′D′=×4×3=6,∴S△A′CM=6﹣=,∵S△AOC=18,∵A′D′∥OA,∴△A′CM∽△ACO,∴=,∴CA′=,∴m=C′A′﹣CA′=5﹣,当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m≤15时,如图4,∵A′D′∥x轴,∴△A′BK∽△ABO,∵S=,S△ABO=54,∴=,解得BA′=2,∴m=BA﹣BA′=15﹣2.故答案为:或15﹣2.【点评】本题属于一次函数综合题,涉及待定系数法求函数解析式,三角形的面积,相似三角形的性质与判定,分类讨论思想等知识,根据△A′C′D′的运动,进行正确的分类讨论是解题关键.22.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.【分析】(1)由y=5x+2=3(x+1)+(2x﹣1),可知函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”;(2)①由得P(2p+1,p﹣1),当x=2p+1时,y=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p)=(p﹣1)(m+n),根据点P在函数y1、y2的“组合函数”图象的上方,有p﹣1>(p﹣1)(m+n),而m+n>1,可得p<1;②由函数y1、y2的“组合函数”y=m(x﹣p﹣2)+n(﹣x+3p)图象经过点P,知p﹣1=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p),即(p﹣1)(1﹣m﹣n)=0,而p≠1,即得n=1﹣m,可得y=(2m﹣1)x+3p﹣(4p+2)m,令y=0得(2m﹣1)x+3p﹣(4p+2)m=0,即(3﹣4m)p+(2m﹣1)x﹣2m=0,即可得m=时,“组合函数”图象与x轴交点Q的位置不变,Q(3,0).【解答】解:(1)函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”,理由如下:∵3(x+1)+(2x﹣1)=3x+3+2x﹣1=5x+2,∴y=5x+2=3(x+1)+(2x﹣1),∴函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”;(2)①由得,∴P(2p+1,p﹣1),∵y1、y2的“组合函数”为y=m(x﹣p﹣2)+n(﹣x+3p),∴x=2p+1时,y=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p)=(p﹣1)(m+n),∵点P在函数y1、y2的“组合函数”图象的上方,∴p﹣1>(p﹣1)(m+n),∴(p﹣1)(1﹣m﹣n)>0,∵m+n>1,∴1﹣m﹣n<0,∴p﹣1<0,∴p<1;②存在m=时,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变,Q(3,0),理由如下:由①知,P(2p+1,p﹣1),∵函数y1、y2的“组合函数”y=m(x﹣p﹣2)+n(﹣x+3p)图象经过点P,∴p﹣1=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p),∴(p﹣1)(1﹣m﹣n)=0,∵p≠1,∴1﹣m﹣n=0,有n=1﹣m,∴y=m(x﹣p﹣2)+n(﹣x+3p)=m(x﹣p﹣2)+(1﹣m)(﹣x+3p)=(2m﹣1)x+3p﹣(4p+2)m,令y=0得(2m﹣1)x+3p﹣(4p+2)m=0,变形整理得:(3﹣4m)p+(2m﹣1)x﹣2m=0,∴当3﹣4m=0,即m=时,x﹣=0,∴x=3,∴m=时,“组合函数”图象与x轴交点Q的位置不变,Q(3,0).【点评】本题考查一次函数综合应用,涉及新定义,函数图象上点坐标的特征,一次函数与一次方程的关系等,解题的关键是读懂“组合函数“的定义.23.(2022•黑龙江)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.【分析】(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.【解答】解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).【点评】本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.【中考挑战满分模拟练】一.选择题(共9小题)1.(2023•鼓楼区校级一模)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)【分析】本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3,2).故选:B.【点评】本题考查学生的动手能力,画出图后可很快得到答案.2.(2023•南海区校级模拟)球的体积是V,球的半径为R,则V=πR3,其中变量和常量分别是()A.变量是V,R;常量是,π B.变量是R,π;常量是 C.变量是V,R,π;常量是 D.变量是V,R3;常量是π【分析】根据常量和变量的概念解答即可.【解答】解:球的体积是V,球的半径为R,则V=πR3,其中变量是V,R;常量是,π故选:A.【点评】本题考查了常量和变量,掌握概念是解题的关键.3.(2023•奉贤区一模)下列函数中,函数值y随自变量x的值增大而减小的是()A. B. C. D.【分析】根据反比例函数及一次函数的增减性即可得答案.【解答】解:A、函数y=,y随自变量x的值增大而增大,故此选项不符合题意;B、函数y=﹣,y随自变量x的值增大而减小,故此选项符合题意;C、函数y=,x>0时,y随自变量x的值增大而减小,x<0时,y随自变量x的值增大而减小,故此选项不符合题意;D、函数y=﹣,x>0时y随自变量x的值增大而增大,x<0时y随自变量x的值增大而增大,故此选项不符合题意.故选:B.【点评】本题考查一次函数、反比例函数的增减性,解题的关键是掌握一次函数、反比例函数的性质.4.(2023•碑林区校级模拟)如图,正比例函数y=﹣3x与一次函数y=kx+4的图象交于点P(a,3),则不等式kx+4>﹣3x的解集为()A.x<﹣1 B.x>﹣1 C.x>﹣2 D.x>0【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x<1时,直线y=2x都在直线y=kx+4的下方,于是可得到不等式2x<kx+4的解集.【解答】解:把P(a,3),代入y=﹣3x得﹣3a=3,解得a=﹣1,则P点坐标为(﹣1,3),所以当x>﹣1时,kx+4>﹣3x,即不等式kx+4>﹣3x的解集为x>﹣1.故选:B.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.(2023•雁塔区校级模拟)在平面直角坐标系中,若将一次函数y=2x+m﹣2的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣4 B.4 C.﹣1 D.1【分析】根据平移的规律得到平移后直线的解析式为y=2(x+3)+m﹣2,然后把原点的坐标代入求值即可.【解答】解:将一次函数y=2x+m﹣2的图象向左平移3个单位后,得到y=2(x+3)+m﹣2,把(0,0)代入,得到:0=6+m﹣2,解得m=﹣4.故选:A.【点评】主要考查的是一次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式是解题的关键.6.(2023•石家庄模拟)若点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y1>y3【分析】根据﹣k2﹣1<0可知的图象在二、四象限,在每个象限内,y随x值的增大而增大,由此可解.【解答】解:∵﹣k2﹣1<0,∴的图象在二、四象限,在每个象限内,y随x值的增大而增大,且点(﹣1,y1)在第二象限,点(2,y2),(3,y3)在第四象限,∴y1>0,y2<0,y3<0,∵3>2,∴y1>0>y3>y2,故选:B.【点评】本题考查反比例函数的图象和性质,解题的关键是根据反比例函数中k的符号判断图象所在象限及增减性.7.(2023•榆林一模)如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y的二元方程组的解是()A. B. C. D.【分析】先利用直线y=x+2确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标得到答案.【解答】解:把P(m,4)代入y=x+2得m+2=4,解得m=2,即P点坐标为(2,4),所以二元一次方程组的解为.故选:B.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.(2023•秀英区一模)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(5,0),sin∠COA=,若反比例函数y=(k>0,x>0)经过点C,则k的值是()A.10 B.12 C.48 D.50【分析】由菱形的性质和锐角三角函数可求点(3,4),将点C坐标代入解析式可求k的值.【解答】解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(5,0),∴OC=OA=5,∵.∴CE=4,∴∴点C坐标(3,4)∵若反比例函数经过点C,∴k=3×4=12,故选:B.【点评】本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,勾股定理,锐角三角函数,关键是求出点C坐标.9.(2023•鼓楼区校级一模)规定[x]表示不大于x的最大整数,例如[2.3]=2,[3]=3,[﹣2.5]=﹣3.那么函数y=[x]的图象为()A. B. C. D.【分析】根据定义可将函数进行化简.【解答】解:由已知得:当0≤x<1时,y=[x]=0,当1≤x<2时,y=[x]=1,当2≤x<3时,y=[x]=2,当﹣1≤x<0时,y=[x]=﹣1,当﹣2≤x<﹣1时,y=[x]=﹣2,……由以上可得A选项符合题意,故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二.填空题(共4小题)10.(2023•奉贤区一模)一次函数y=3x+1的图像不经过的象限是第四象限.【分析】根据一次函数的图象与系数的关系解答即可.【解答】解:∵一次函数y=3x+1中,k=3>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:第四象限.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解题的关键.11.(2023•包头一模)如图,直线y=﹣2x+5与双曲线y=(k>0,x>0)相交于A,B两点,与x轴相交于点C.S△BOC=,若将直线y=﹣2x+5沿y轴向下平移n个单位,所得直线与双曲线y=(k>0,x>0)有且只有一个交点,则n的值为1.【分析】过点B作BE⊥x轴于点E,根据一次函数图象上点的坐标特征以及S△BOC=即可得出BE的长度,进而可找出点B的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k的值,根据平移的性质找出平移后的直线的解析式,然后令﹣2x+5﹣n=,整理得2x2﹣(5﹣n)x+2=0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论