专题11.5 多边形-重难点题型(学生版)2022年八年级数学上册举一反三系列(人教版)_第1页
专题11.5 多边形-重难点题型(学生版)2022年八年级数学上册举一反三系列(人教版)_第2页
专题11.5 多边形-重难点题型(学生版)2022年八年级数学上册举一反三系列(人教版)_第3页
专题11.5 多边形-重难点题型(学生版)2022年八年级数学上册举一反三系列(人教版)_第4页
专题11.5 多边形-重难点题型(学生版)2022年八年级数学上册举一反三系列(人教版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题11.5多边形-重难点题型【人教版】【题型1多边形的概念】【例1】(2020秋•太康县期末)下列图形中,多边形有()A.1个 B.2个 C.3个 D.4个【变式1-1】如图所示的图形中,属于多边形的有个.【变式1-2】如图,下列图形是多边形的有(填序号).【变式1-3】如图,图中有个四边形.【题型2多边形的不稳定性】【例2】(2020秋•德州校级月考)要使一个五边形具有稳定性,则需至少添加()条对角线.A.1 B.2 C.3 D.4【变式2-1】(2020春•费县期末)下列图形中具有稳定性有()A.2个 B.3个 C.4个 D.5个【变式2-2】(2020春•浦东新区校级月考)以线段a=7,b=8,c=9,d=10为边作四边形,可以作()A.1个 B.2个 C.3个 D.无数个【变式2-3】如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?【题型3多边形的截角问题】【例3】(2020秋•巴州区期末)若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15 B.13或14 C.13或14或15 D.14或15或16【变式3-1】(2020秋•海淀区期末)如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长(填:大或小),理由为.【变式3-2】(2020春•文登区期末)将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.8【变式3-3】(2020秋•肇源县期末)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.19【题型4多边形的对角线】【例4】分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:.(2)从十五边形的一个顶点可以引出条对角线,十五边形共有条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【变式4-1】(2020春•杜尔伯特县期末)一个边数为2n的多边形内所有对角线的条数是边数为n的多边形内所有对角线条数的6倍,求这两个多边形的边数.【变式4-2】(2020春•福清市校级期末)阅读下列内容,并答题:我们知道计算n边形的对角线条数公式为n(n−3)2,如果有一个n边形的对角线一共有20条,则可以得到方程n(n−3)2=20,去分母得n(n﹣3)=40;∵n为大于等于3的整数,且n比n﹣3的值大3,∴满足积为40且相差3的因数只有8和5,符合方程n(n(1)若有一个多边形的对角线一共有14条,求这个多边形的边数;(2)A同学说:“我求得一个多边形的对角线一共有30条.”你认为A同学说地正确吗?为什么?【变式4-3】(2020秋•东湖区校级月考)如图,先研究下面三角形、四边形、五边形、六边形…多边形的边数n及其对角线条数t的关系,再完成下面问题:(1)若一个多边形是七边形,它的对角线条数为,n边形的对角线条数为t=(用n表示).(2)求正好65条对角线的多边形是几边形.【题型5正多边形的概念】【例5】下列图形为正多边形的是()A. B. C. D.【变式5-1】如图,若集合A表示四边形,集合B表示正多边形,则阴影部分表示.【变式5-2】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.【变式5-3】如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为.【题型6多边形的计算】【例6】如下图,多边形任意相邻两边互相垂直,则这个多边形的周长为.【变式6-1】(2020秋•日照期末)已知:从n边形的一个顶点出发共有4条对角线;从m边形的一个顶点出发的所有对角线把m边形分成6个三角形;正t边形的边长为7,周长为63.求(n﹣m)t的值.【变式6-2】一个四边形的周长是46cm,已知第一条边长是acm,第二条边长比第一条边长的三倍还少5cm,第三条边长等于第一、第二条边长的和.(1)写出表示第四条边长的式子;(2)当a=7cm还能得到四边形吗?为什么?此时的图形是什么形状?【变式6-3】已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论