专题17 探究函数图象与性质问题【考点精讲】_第1页
专题17 探究函数图象与性质问题【考点精讲】_第2页
专题17 探究函数图象与性质问题【考点精讲】_第3页
专题17 探究函数图象与性质问题【考点精讲】_第4页
专题17 探究函数图象与性质问题【考点精讲】_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题17探究函数图象专题17探究函数图象与性质问题知识导航知识导航题型精讲题型精讲题型一:根据解析式探究函数图像与性质【例1】(2021·山东临沂市)已知函数(1)画出函数图象;列表:x......y......描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设是函数图象上的点,若,证明:.【例2】(2021·吉林中考真题)在平面直角坐标系中,抛物线(m为常数)的顶点为A.(1)当时,点A的坐标是,抛物线与y轴交点的坐标是.(2)若点A在第一象限,且,求此抛物线所对应的二次函数的表达式,并写出函数值y随x的增大而减小时x的取值范围.(3)当时,若函数的最小值为3,求m的值.(4)分别过点、作y轴的垂线,交抛物线的对称轴于点M、N.当抛物线与四边形PQNM的边有两个交点时,将这两个交点分别记为点B、点C,且点B的纵坐标大于点C的纵坐标.若点B到y轴的距离与点C到x轴的距离相等,直接写出m的值.题型二:实际问题探究函数性质【例2】(2021·吉林长春市)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:(实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:供水时间x(小时)02468箭尺读数y(厘米)618304254(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(结论应用)应用上述发现的规律估算:(3)供水时间达到12小时时,箭尺的读数为多少厘米?(4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)提分训练提分训练1.(2020•重庆)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=−12x…﹣4﹣3﹣2﹣101234…y…−2a﹣2﹣4b﹣4﹣2−12−2…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=−12x2②当x=0时,函数y=−12③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=−23x−103的图象如图所示,结合你所画的函数图象,直接写出不等式2.(2020•济宁)在△ABC中,BC边的长为x,BC边上的高为y,△ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.3.(2020•河北)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.4.(2020•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6x(1)请把下表补充完整,并在图中补全该函数图象;x…﹣5﹣4﹣3﹣2﹣1012345…y=…−15−24−12﹣30312524171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+15.(2021·江西)二次函数的图象交轴于原点及点.感知特例(1)当时,如图1,抛物线上的点,,,,分别关于点中心对称的点为,,,,,如下表:…(___,___)………①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为.形成概念我们发现形如(1)中的图象上的点和抛物线上的点关于点中心对称,则称是的“孔像抛物线”.例如,当时,图2中的抛物线是抛物线的“孔像抛物线”.探究问题(2)①当时,若抛物线与它的“孔像抛物线”的函数值都随着的增大而减小,则的取值范围为_______;②在同一平面直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论