版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题2.6等边三角形-重难点题型【苏科版】【知识点1等边三角形】(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.【题型1等边三角形的性质(角度问题)】【例1】(2020秋•赫山区期末)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,求∠ACE的度数.【变式1-1】(2020秋•河东区期中)如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.【变式1-2】(2020秋•肥东县期末)如图,△ABC是等边三角形,延长BC到E,使CE=12BC.点D是边AC的中点,连接ED并延长交AB于(1)求∠EFB的度数;(2)求证:DE=2DF.【变式1-3】(2020秋•郑州期末)如图,已知∠AOB=120°,△COD是等边三角形(三条边都相等,三个角都等于60°的三角形),OM平分∠BOC.(1)如图1,当∠AOC=30°时,∠DOM=;(2)如图2,当∠AOC=100°时,∠DOM=;(3)如图3,当∠AOC=α(0°<α<180°)时,求∠DOM的度数,请借助图3填空.解:因为∠AOC=α,∠AOB=120°,所以∠BOC=∠AOC﹣∠AOB=α﹣120°,因为OM平分∠BOC,所以∠MOC=∠BOC=(用α表示),因为△COD为等边三角形,所以∠DOC=60°,所以∠DOM=∠MOC+∠DOC=(用α表示).(4)由(1)(2)(3)问可知,当∠AOC=β(0°<β<180°)时,直接写出∠DOM的度数.(用β来表示,无需说明理由)【题型2等边三角形的性质(规律问题)】【例2】(2021春•渠县期末)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A6B6A7的边长为()A.16 B.32 C.64 D.128【变式2-1】(2020秋•新化县期末)如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△AnBnAn+1的边长为.【变式2-2】如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长和为.(n≥2,且n为整数)【变式2-3】(2020秋•汉阳区期末)如图,在平面直角坐标系中,有一个正三角形ABC,其中B,C的坐标分别为(1,0)和C(2,0).若在无滑动的情况下,将这个正三角形沿着x轴向右滚动,则在滚动的过程中,这个正三角形的顶点A,B,C中,会过点(2020,1)的是点.【题型3等边三角形的性质(动点问题)】【例3】(2021春•渭滨区期末)如图,在等边△ABC中,AB=12cm,现有M,N两点分别从点A,B同时出发,沿△ABC的边按顺时针方向运动,已知点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N同时停止运动,设运动时间为t(s).(1)当t为何值时,M,N两点重合?两点重合在什么位置?(2)当点M,N在BC边上运动时,是否存在使AM=AN的位置?若存在,请求出此时点M,N运动的时间;若不存在,请说明理由.【变式3-1】如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A,B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动.设运动时间为:t(s),当t=2时,判断△BQP的形状,并说明理由.【变式3-2】(2020春•市中区期中)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?【变式3-3】(2020秋•大武口区期末)如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?【题型4等边三角形的判定】【例4】(2020秋•渑池县期末)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③ B.①②④ C.①③ D.①②③④【变式4-1】(2021春•平川区校级期末)下面给出的几种三角形:①三个内角都相等②有两个外角为120°③一边上的高也是这边所对的角的平分线④三条边上的高相等,其中是等边三角形的有()A.4个 B.3个 C.2个 D.1个【变式4-2】(2020春•福山区期末)在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形(2)有两个外角相等的等腰三角形是等边三角形(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形(4)三个外角都相等的三角形是等边三角形其中正确的个数是()A.4个 B.3个 C.2个 D.1个【变式4-3】(2020春•文登区期末)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个 B.3个 C.4个 D.无数个【题型5等边三角形的判定与性质综合】【例5】(2020秋•松桃县期末)如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=12cm,求CM的长.【变式5-1】(2020秋•邵阳县期末)如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC(1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.【变式5-2】(2020秋•浦城县期中)如图,△ABC是等边三角形.(1)如图①,DE∥BC,分别交AB、AC于点D、E.求证:△ADE是等边三角形;(2)如图②,△ADE仍是等边三角形,点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.【变式5-3】在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.【题型6等边三角形中的多结论问题)】【例6】(2020春•武侯区校级期末)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个 B.3个 C.4个 D.5个【变式6-1】(2021春•靖边县期末)如图,已知△ABC是等边三角形,D是BC边上的一个动点(异于点B、C),过点D作DE⊥AB,垂足为E,DE的垂直平分线分别交AC、BC于点F、G,连接FD,FE.当点D在BC边上移动时,有下列三个结论:①△DEF一定为等腰三角形;②△CFG一定为等边三角形;③△FDC可能为等腰三角形.其中正确的有()A.0个 B.1个 C.2个 D.3个【变式6-2】(2020秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=12AB;③
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版个体户店铺租赁合同(标准版)3篇
- 大型公共建筑监理合同(2篇)
- 12 醉翁亭记2024-2025学年九年级语文上册同步说课稿(河北专版)
- 22 文言文二则 书戴嵩画牛(说课稿)-2024-2025学年统编版语文六年级上册
- 2024年汽轮机油技术升级与市场推广合作协议3篇
- 完整交通事故赔偿协议书
- 消防项目合作协议书
- 体育中心场地租赁合同
- 洒水车标准租赁合同
- 三方房产抵债协议书
- 2024年大型集团公司IT信息化顶层规划报告
- 2024小学四年级奥数培优竞赛试卷含答案
- 人教版(2019)必修 第三册Unit 2 Morals and Virtues重点单词及用法总结清单
- 茶楼服务员培训课件
- 2024危险化学品仓库企业安全风险评估细则
- 2024MA 标识体系标准规范
- 充电桩建设项目可行性研究报告
- 【李宁股份公司存货管理问题及完善策略9000字(论文)】
- 温州食堂承包策划方案
- 四年级数学(四则混合运算带括号)计算题专项练习与答案
- 2024年中国华能集团有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论