版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山多悦高中2025届高三3月份模拟考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面向量满足,且,则所夹的锐角为()A. B. C. D.02.()A. B. C. D.3.若(),,则()A.0或2 B.0 C.1或2 D.14.已知函数,若,则等于()A.-3 B.-1 C.3 D.05.设全集U=R,集合,则()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}6.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A. B. C. D.7.已知的值域为,当正数a,b满足时,则的最小值为()A. B.5 C. D.98.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根9.已知全集,集合,则=()A. B.C. D.10.在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是()A.点F的轨迹是一条线段 B.与BE是异面直线C.与不可能平行 D.三棱锥的体积为定值11.在中,为边上的中点,且,则()A. B. C. D.12.在中,内角的平分线交边于点,,,,则的面积是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若展开式的二项式系数之和为64,则展开式各项系数和为__________.14.已知数列满足对任意,,则数列的通项公式__________.15.已知直线被圆截得的弦长为2,则的值为__16.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列{an}的前n项和为Sn,且(1)求数列{a(2)求数列{1Sn}的前18.(12分)已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x的取值范围.19.(12分)[2018·石家庄一检]已知函数.(1)若,求函数的图像在点处的切线方程;(2)若函数有两个极值点,,且,求证:.20.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.21.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.22.(10分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且.(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据题意可得,利用向量的数量积即可求解夹角.【详解】因为即而所以夹角为故选:B【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.2、B【解析】
利用复数代数形式的乘除运算化简得答案.【详解】.故选B.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3、A【解析】
利用复数的模的运算列方程,解方程求得的值.【详解】由于(),,所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.4、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.5、C【解析】
解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.6、B【解析】
根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【详解】因为终边上有一点,所以,故选:B【点睛】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.7、A【解析】
利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.【详解】解:∵的值域为,∴,∴,∴,当且仅当时取等号,∴的最小值为.故选:A.【点睛】本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.8、C【解析】
由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.9、D【解析】
先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.10、C【解析】
分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断.【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、、,,平面,平面,平面.同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点.正确.对于,平面平面,和平面相交,与是异面直线,正确.对于,由知,平面平面,与不可能平行,错误.对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:.【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.11、A【解析】
由为边上的中点,表示出,然后用向量模的计算公式求模.【详解】解:为边上的中点,,故选:A【点睛】在三角形中,考查中点向量公式和向量模的求法,是基础题.12、B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.【详解】由题意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.故答案为:【点睛】本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.14、【解析】
利用累加法求得数列的通项公式,由此求得的通项公式.【详解】由题,所以故答案为:【点睛】本小题主要考查累加法求数列的通项公式,属于基础题.15、1【解析】
根据弦长为半径的两倍,得直线经过圆心,将圆心坐标代入直线方程可解得.【详解】解:圆的圆心为(1,1),半径,
因为直线被圆截得的弦长为2,
所以直线经过圆心(1,1),
,解得.故答案为:1.【点睛】本题考查了直线与圆相交的性质,属基础题.16、3【解析】
双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a>0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)an=2n【解析】
(1)先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.(2)利用裂项相消法求出数列的和.【详解】解:(1)设公差为d的等差数列{an}且a1+a则有:a1解得:a1=3,所以:a(2)由于:an所以:Sn则:1S则:Tn=1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.18、≤x≤【解析】由题知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当(a+b)·(a-b)≥0时取等号,∴的最小值等于2.∴x的范围即为不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.19、(1)(2)见解析【解析】试题分析:(1)分别求得和,由点斜式可得切线方程;(2)由已知条件可得有两个相异实根,,进而再求导可得,结合函数的单调性可得,从而得证.试题解析:(1)由已知条件,,当时,,,当时,,所以所求切线方程为(2)由已知条件可得有两个相异实根,,令,则,1)若,则,单调递增,不可能有两根;2)若,令得,可知在上单调递增,在上单调递减,令解得,由有,由有,从而时函数有两个极值点,当变化时,,的变化情况如下表单调递减单调递增单调递减因为,所以,在区间上单调递增,.另解:由已知可得,则,令,则,可知函数在单调递增,在单调递减,若有两个根,则可得,当时,,所以在区间上单调递增,所以.20、(1)(2)【解析】
(1)由公式可化极坐标方程为直角坐标方程;(2)把点极坐标化为直角坐标,直线的参数方程是过定点的标准形式,因此直接把参数方程代入曲线的方程,利用参数的几何意义求解.【详解】解:(1),则,∴,所以曲线的直角坐标方程为,即(2)点的直角坐标为,易知.设对应参数分别为将与联立得【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题.21、(1),(2)(3)【解析】
(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,,然后利用公式法,可得结果.(2)根据(1)的结论,利用错位相减法求和,可得结果.(3)计算出,代值计算并化简,可得结果.【详解】解:(1)依题意:,即,解得:所以,(2),,,上面两式相减,得:则即所以,(3),所以由得,,即【点睛】本题主要考查等差数列和等比数列的综合应用,以及利用错位相减法求和,属基础题.22、(1)见解析;(2).【解析】
(1)分斜率为0,斜率不存在,斜率不为0三种情况讨论,设的方程为,可求解得到,,可得到的距离为1,即得证;(2)表示的面积为,利用均值不等式,即得解.【详解】(1)由题意,椭圆的焦点在x轴上,且,所以.所以椭圆的方程为.由点在直线上,且知的斜率必定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业内部培训师招聘合同书
- 水泥行业托盘租赁协议
- 2024年软件开发合作合同3篇
- 影视基地建设管理策略
- 汽车维修质量异常处理要点
- 临时演员加入企业年会合同
- 网络教育副总经理招聘合同
- 停车场导向牌安装协议
- 城市绿化施工总承包合同
- 泥水匠劳动合同模板
- 青海省西宁市2021-2022学年八年级上学期期末历史试题(解析版)
- 2024年外科的工作计划和建议外科工作计划
- 2024统编版七年级上册语文期末复习:名著阅读 练习题汇编(含答案解析)
- 2024年物业管理员(中级)职业鉴定考试题库(含答案)
- 统编版(2024版)七年级上册历史:期末复习课件
- 国开(陕西)2024年《中国制造之高端装备》形考作业1-4答案
- 陪诊培训课件
- 工会新闻写作培训课题
- 医疗行业销售内勤工作汇报
- 统计年报和定报培训
- 浙江省杭州市西湖区2023-2024学年九年级上学期期末考试语文试卷+
评论
0/150
提交评论