版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市青州二中2025届高考临考冲刺数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A. B. C.l D.12.设复数z=,则|z|=()A. B. C. D.3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A. B. C. D.4.函数在上单调递减的充要条件是()A. B. C. D.5.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.6.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙7.已知等差数列的前13项和为52,则()A.256 B.-256 C.32 D.-328.设复数,则=()A.1 B. C. D.9.已知点,若点在曲线上运动,则面积的最小值为()A.6 B.3 C. D.10.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.11.已知是等差数列的前项和,,,则()A.85 B. C.35 D.12.已知集合,则为()A.[0,2) B.(2,3] C.[2,3] D.(0,2]二、填空题:本题共4小题,每小题5分,共20分。13.已知圆柱的两个底面的圆周在同一个球的球面上,圆柱的高和球半径均为2,则该圆柱的底面半径为__________.14.已知,(,),则=_______.15.若,则的展开式中含的项的系数为_______.16.锐角中,角,,所对的边分别为,,,若,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积18.(12分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.19.(12分)已知函数f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)当x>0时,若函数g(x)(a>0)的最小值恒大于f(x),求实数a的取值范围.20.(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(Ⅰ)求曲线的普通方程与直线的直角坐标方程;(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.21.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,22.(10分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,,求四边形面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.2、D【解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.3、C【解析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,
该几何体的表面积:.故选C.【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.4、C【解析】
先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,,令,则,故在上恒成立;结合图象可知,,解得故.故选:C.【点睛】本题考查求三角函数单调区间.求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.5、D【解析】
通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.6、A【解析】
利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.7、A【解析】
利用等差数列的求和公式及等差数列的性质可以求得结果.【详解】由,,得.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.8、A【解析】
根据复数的除法运算,代入化简即可求解.【详解】复数,则故选:A.【点睛】本题考查了复数的除法运算与化简求值,属于基础题.9、B【解析】
求得直线的方程,画出曲线表示的下半圆,结合图象可得位于,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值.【详解】解:曲线表示以原点为圆心,1为半径的下半圆(包括两个端点),如图,直线的方程为,可得,由圆与直线的位置关系知在时,到直线距离最短,即为,则的面积的最小值为.故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.10、B【解析】
由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.11、B【解析】
将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,,,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.12、B【解析】
先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由圆柱外接球的性质,即可求得结果.【详解】解:由于圆柱的高和球半径均为2,,则球心到圆柱底面的距离为1,设圆柱底面半径为,由已知有,∴,即圆柱的底面半径为.故答案为:.【点睛】本题考查由圆柱的外接球的性质求圆柱底面半径,属于基础题.14、【解析】
先利用倍角公式及差角公式把已知条件化简可得,平方可得.【详解】∵,∴,则,平方可得.故答案为:.【点睛】本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.15、【解析】
首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.16、【解析】
由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)先把参数方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;(2)先利用极坐标求出弦长,再求高,最后求的面积.【详解】(1)曲线的极坐标方程为:,因为曲线的普通方程为:,曲线的极坐标方程为;(2)由(1)得:点的极坐标为,点的极坐标为,,点到射线的距离为的面积为.【点睛】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.18、(1)单调递减区间为,单调递增区间为;(2)【解析】
(1)求导,根据导数与函数单调性关系即可求出.(2)解法一:分类讨论:当时,观察式子可得恒成立;当时,利用导数判断函数为单调递增,可知;当时,令,由,,根据零点存在性定理可得,进而可得在上,单调递减,即不满足题意;解法二:通过分离参数可知条件等价于恒成立,进而记,问题转化为求在上的最小值问题,通过二次求导,结合洛比达法则计算可得结论.【详解】(1)当,,,,令,解得,当时,,当时,,在上单调递减,在上单调递增.(2)解法一:当时,函数,若时,此时对任意都有,所以恒成立;若时,对任意都有,,所以,所以在上为增函数,所以,即时满足题意;若时,令,则,所以在上单调递增,,,可知,一定存在使得,且当时,,所以在上,单调递减,从而有时,,不满足题意;综上可知,实数a的取值范围为.解法二:当时,函数,又当时,,对一切恒成立等价于恒成立,记,其中,则,令,则,在上单调递增,,恒成立,从而在上单调递增,,由洛比达法则可知,,,解得.实数a的取值范围为.【点睛】本题考查利用导数研究函数的单调性与不等式恒成立问题,考查了分类与整合的解题思想,涉及分离参数法等技巧、涉及到洛比达法则等知识,注意解题方法的积累,属于难题.19、(Ⅰ);(Ⅱ)。【解析】
(Ⅰ)分类讨论,去掉绝对值,求得原绝对值不等式的解集;(Ⅱ)由条件利用基本不等式求得,,再由,求得的范围.【详解】(Ⅰ)当时,原不等式可化为,此时不成立;当时,原不等式可化为,解得,即;当时,原不等式可化为,解得.综上,原不等式的解集是.(Ⅱ)因为,当且仅当时等号成立,所以.当时,,所以.所以,解得,故实数的取值范围为.【点睛】本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20、(1)(x-1)2+y2=4,直线l的直角坐标方程为x-y-2=0;(2)3.【解析】
(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(1)由曲线C的参数方程(α为参数)(α为参数),两式平方相加,得曲线C的普通方程为(x-1)2+y2=4;由直线l的极坐标方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直线l的直角坐标方程为x-y-2=0.(2)由题意可得P(2,0),则直线l的参数方程为(t为参数).设A,B两点对应的参数分别为t1,t2,则|PA|·|PB|=|t1|·|t2|,将(t为参数)代入(x-1)2+y2=4,得t2+t-3=0,则Δ>0,由韦达定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.21、(1)选取更合适;(2);(3)时,煤气用量最小.【解析】
(1)根据散点图的特点,可得更适合;(2)先建立关于的回归方程,再得出关于的回归方程;(3)写出函数关系,利用基本不等式得出最小值及其成立的条件.【详解】(1)选取更适宜作烧水时间关于开
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年温州职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年深圳职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 二零二五年度高速公路桥梁养护劳务承包协议3篇
- rA公路工程施工测量教学文案
- 2024年浙江纺织服装职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 九年级数学上册第一章特殊平行四边形11菱形的性质与判定第3课时菱形的性质判定与其他知识的综合作业课件新版北师大版
- 2024年泸州职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年河南护理职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年河北化工医药职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年江西青年职业学院高职单招语文历年参考题库含答案解析
- 2024年庆阳市人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 专题03 首字母填空15篇-冲刺2024年中考英语必考题型终极预测(广州专用)
- 电工电子技术 课件-电工电子技术 第2章
- 第十七届山东省职业院校技能大赛市场营销赛项赛卷第一套
- 塔吊司机和指挥培训
- 政府关系与公共关系管理制度
- 粮库工程合同范本
- 研发实验室安全培训
- 地测防治水技能竞赛理论考试题库(含答案)
- 湖北省十堰市2025届高一数学第一学期期末教学质量检测试题含解析
- 中考英语复习分析如何写英语高分作文课件
评论
0/150
提交评论