版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年安徽省六安市高三上学期11月月考数学检测试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是两个不同的平面,是两条不同的直线,下列命题不正确的是()A.若,则B.若,则C.若,则D.若,则2.如图所示,在四棱锥中,底面是正方形,为中点,若,则()A.B.C.D.3.某学校高二年级选择“物化生”,“物化地”和“史地政”组合的同学人数分别为240,90和120.现采用分层抽样的方法选出30位同学进行某项调查研究,则“史地政”组合中选出的同学人数为()A.8B.12C.16D.64.已知数列的首项,则()A.48B.80C.63D.655.已知等差数列满足,前项和为,若,则与最接近的整数是()A.5B.4C.2D.16.已知数列满足,若对于任意都有,则实数的取值范围是()A.B.C.D.7.在棱长为2的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为B.存在点使得异面直线与所成角为C.存在点使得二面角的平面角为D.当时,平面截正方体所得的截面面积为8.已知一圆柱的轴截面为正方形,母线长为,在该圆柱内放置一个棱长为的正四面体,并且正四面体在该圆柱内可以任意转动,则的最大值为()A.1B.2C.D.4二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图的形状出现在南宋数学家杨辉所著的《详解九章算法∙商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,,设第层有个球,从上往下层球的总数为,则()A.B.C.D.10.在边长为6的菱形中,,现将沿折起到的位置,使得二面角是锐角,则三棱锥的外接球的表面积可以是()A.B.C.D.11.对于棱长为1(单位:)的正方体容器(容器壁厚度忽略不计),下列说法正确的是()A.底面半径为高为的圆锥形罩子(无底面)能够罩住水平放置的该正方体B.以该正方体同一顶点出发的三条棱作为圆锥的母线,则此圆锥的母线与底面所成角的正切值为C.该正方体内能同时整体放入两个底面半径为高为的圆锥D.该正方体内能整体放入一个体积为的圆锥三、填空题:本题共3小题,每小题5分,共15分.12.已知一组数据的平均数是1,则这组数据的中位数为__________.13.已知四棱锥平面,底面是为直角,的直角梯形,如图所示,且,点为的中点,则到直线的距离为__________.14.若在长方体中,.则四面体与四面体公共部分的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设三角形的内角的对边分别为且.(1)求角的大小;(2)若边上的高为,求三角形的周长.16.(本小题满分15分)已知无穷等比数列的前项和为(1)求的值;(2)设,求数列的前项和.17.(本小题满分15分)如图所示,在三棱柱中,平面,点是的中点(1)证明:;(2)求与平面所成角的正弦值.18.(本小题满分17分)如图1,在等腰梯形中,,点在以为直径的半圆上,且,将半圆沿翻折如图2.(1)求证:平面;(2)当多面体的体积为32时,求平面与平面夹角的余弦值.19.(本小题满分17分)若存在非零常数,使得数列满足,则称数列为“数列”.(1)判断数列:是否为“数列”,并说明理由;(2)若数列是首项为1的“数列”,数列是等比数列,且与满足,求的值和数列的通项公式;(3)若数列是“数列”,为数列的前项和,,证明:答案1.D2.C3.A【分析】根据分层抽样的定义列出式子,进行求解.【详解】由题意得,史地政“组合中选出的同学人数为.故选:A4.C解:数列的首项,则:,整理得:,所以:,即:(常数),所以数列是以为首项,1为公差的等差数列.则:,整理得:(首项符合通项),则:,所以.故选.5.C解:,则,则与最接近的整数是2.故选:C.6.C7.【正确答案】D异面直线与所成的角可转化为直线与所成角,当为的中点时,,此时与所成的角为,所以A错误;当与或重合时,直线与所成的角最小,为,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以分别是的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,所以梯形的面积为,所以D正确.8.【正确答案】D【详解】因为圆柱的轴截面为正方形,母线长为,所以圆柱的底面圆直径和高都是,所以该圆柱的内切球的半径为,如图球即为该圆柱的内切球,若该圆柱内放置一个棱长为的正四面体,并且正四面体在该圆柱内可以任意转动,则该正四面体内接于该圆柱的内切球时,棱长最大,如图该正四面体的棱长为,设点在面内的射影为,即面,则球心在上,且,,所以,所以,在中,,即,整理可得:,解得或(舍),所以的最大值为4,故选:D9.ACD10.AD11.【正确答案】BD【详解】对于A,圆锥体积小于正方体体积,显然不对;对于B,如图,以三条棱作为圆锥母线,底面所在平面为平面,等价于求与平面所成角的正切值,因为所以,所以点A到平面的距离为,则此圆锥的母线与底面所成角的正切值为,B正确;对于C,如图,以矩形的中心为圆锥底面圆圆心,半径为0.5,分别以的中点为两个圆锥的顶点,每个圆锥高的最大值为错误;对于D,如图,的中点作垂线,分别交于点,则,以正方体的体对角线作为圆锥的轴,为圆锥顶点,为圆锥底面圆的直径时,该圆锥的体积为,D正确.事实上,以正方体的体对角线作为轴,为顶点的圆锥的体积最大值,显然底面圆心在线段上(不含点),设,当与(为的四等分点)重合时,,因此,因为,所以,则,圆锥体积在上恒成立,所以在上单调递增,体积的最大值为,D正确.故选:BCD.12.【正确答案】1【详解】这组数据的平均数为1,有,可求得.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是.故1.13.【解答过程】由题意知,平面平面,所以,又,故以为原点,所在的直线分别为轴,建立如图空间直角坐标系,则,得所以,记,则,所以到直线的距离为14.解:记,则为的第一个三等分点(靠近),连,则公共部分是三棱锥,又作,则面,故.15.(1)因为为的内角,所以,因为,所以可化为:,即,即解得:,即.(另解:由;得.)(2)由三角形面积公式得代入得:,所以,故为正三角形,,周长等于16.(1)当时,,因为是等比数列,所以,又因为,所以(2)由(1)知,因为,且,所以是以6为首项,9为公比的等比数列,.17.解析:(1)由题意,平面平面,所以,又,且平面,所以平面,因为平面,所以.(2)法一(坐标法):由(1)知,又,所以,以为原点建立如图所示的空间直角坐标系,则,,所以,,设平面的法向量为,则,所以,从而,故直线与平面所成角的正弦值为.法二(几何法):取中点,则,记与面所成角为,则由知解得,又,所以18.(1)连由等边三角形可知分布在同一个圆周上,且,则六边形为正六边形,面面(2)在图1中连交于,则,连交于,则,故在图2中面面记面与面所成角为,则故,即面面法一(几何法):延长交于延长交于则为面与面交线且取中点,连接,则即为面与面所成角在中,,故,故面与面所成角的余弦值为法二(坐标法):以为坐标原点,所在的直线为轴,建立空间直角坐标系,则,,有令得同理可得面法向量,设面与面所成角为,故19.【详解】(1)根据”数列“的定义,则,故,因为成立,成立,不成立,所以不是”数列“.(2)由是首项为2的”数列“,则,由是等比数列,设公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁中医药大学《经典电影作品研究》2023-2024学年第一学期期末试卷
- 兰州现代职业学院《web应用开发基础课程设计》2023-2024学年第一学期期末试卷
- 江西理工大学《舞蹈专业教学法(1)》2023-2024学年第一学期期末试卷
- 济南工程职业技术学院《纱线设计及打样》2023-2024学年第一学期期末试卷
- 湖南工商大学《传统武术》2023-2024学年第一学期期末试卷
- 重庆交通大学《J2EE框架技术》2023-2024学年第一学期期末试卷
- 钟山职业技术学院《组件式GIS开发技术》2023-2024学年第一学期期末试卷
- 浙江汽车职业技术学院《中国传统音乐赏析》2023-2024学年第一学期期末试卷
- 中国戏曲学院《食品微生物学与微生物检验》2023-2024学年第一学期期末试卷
- 小学学校2024-2025学年度第二学期工作计划
- 智慧农业的传感器与智能设备
- 旅游路线规划设计方案
- DB37-T 5097-2021 山东省绿色建筑评价标准
- 五年级上册简易方程练习100题及答案
- MDR医疗器械法规考核试题及答案
- 让学生看见你的爱
- 领导沟通的艺术
- 发生用药错误应急预案
- 南浔至临安公路(南浔至练市段)公路工程环境影响报告
- 绿色贷款培训课件
- 大学生预征对象登记表(样表)
评论
0/150
提交评论