版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省临川一中等2025届高三最后一模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B. C. D.2.若的展开式中的系数为-45,则实数的值为()A. B.2 C. D.3.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立4.已知复数,则()A. B. C. D.25.下列函数中,既是奇函数,又在上是增函数的是().A. B.C. D.6.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位7.执行如图所示的程序框图,若输出的,则输入的整数的最大值为()A.7 B.15 C.31 D.638.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件10.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是 B.是奇函数C.是周期函数 D.是增函数11.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于()A. B. C. D.12.在长方体中,,则直线与平面所成角的余弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列为正项等比数列,,则的最小值为________.14.己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是______.15.设,则_____,(的值为______.16.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:①当时,存在实数m,使函数恰有5个不同的零点;②若,函数的零点不超过4个,则;③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列.其中,正确命题的序号是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.18.(12分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.19.(12分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.20.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.21.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.22.(10分)已知在中,角,,的对边分别为,,,的面积为.(1)求证:;(2)若,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.【详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为.故选D.【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.2、D【解析】
将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】∵所以展开式中的系数为,∴解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.3、C【解析】
写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.4、C【解析】
根据复数模的性质即可求解.【详解】,,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.5、B【解析】
奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.6、A【解析】依题意有的周期为.而,故应左移.7、B【解析】试题分析:由程序框图可知:①,;②,;③,;④,;⑤,.第⑤步后输出,此时,则的最大值为15,故选B.考点:程序框图.8、C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.9、C【解析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.10、C【解析】
根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.11、B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.12、C【解析】
在长方体中,得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.【详解】在长方体中,平面即为平面,过做于,平面,平面,平面,为与平面所成角,在,,直线与平面所成角的余弦值为.故选:C.【点睛】本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、27【解析】
利用等比数列的性质求得,结合其下标和性质和均值不等式即可容易求得.【详解】由等比数列的性质可知,则,.当且仅当时取得最小值.故答案为:.【点睛】本题考查等比数列的下标和性质,涉及均值不等式求和的最小值,属综合基础题.14、【解析】
首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案.【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,,解得.故答案为.【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目.15、7201【解析】
利用二项展开式的通式可求出;令中的,得两个式子,代入可得结果.【详解】利用二项式系数公式,,故,,故(=,故答案为:720;1.【点睛】本题考查二项展开式的通项公式的应用,考查赋值法,是基础题.16、①②③【解析】
根据偶函数的图象关于轴对称,利用已知中的条件作出偶函数的图象,利用图象对各个选项进行判断即可.【详解】解:当时又因为为偶函数可画出的图象,如下所示:可知当时有5个不同的零点;故①正确;若,函数的零点不超过4个,即,与的交点不超过4个,时恒成立又当时,在上恒成立在上恒成立由于偶函数的图象,如下所示:直线与图象的公共点不超过个,则,故②正确;对,偶函数的图象,如下所示:,使得直线与恰有4个不同的交点点,且相邻点之间的距离相等,故③正确.故答案为:①②③【点睛】本题考查函数方程思想,数形结合思想,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值.【详解】(1)证明:因为,为中点,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,,,,,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化.考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论.18、(Ⅰ)或(Ⅱ)12【解析】
(1)先设数列的公比为,根据题中条件求出公比,即可得出通项公式;(2)根据(1)的结果,由等比数列的求和公式,即可求出结果.【详解】(1)设数列的公比为,,,或.(2)时,,解得;时,,无正整数解;综上所述.【点睛】本题主要考查等比数列,熟记等比数列的通项公式与求和公式即可,属于基础题型.19、(1)见解析;(2)【解析】
(1)不等式等价于,设,利用导数可证恒成立,从而原不等式成立.(2)由题设条件可得在上有两个不同零点,且,利用导数讨论的单调性后可得其最小值,结合前述的集合的包含关系可得的取值范围.【详解】(1)设,则,当时,由,所以在上是减函数,所以,故.因为,所以,所以当时,.(2)由(1)当时,;任意,存在和使成立,所以在上有两个不同零点,且,(1)当时,在上为减函数,不合题意;(2)当时,,由题意知在上不单调,所以,即,当时,,时,,所以在上递减,在上递增,所以,解得,因为,所以成立,下面证明存在,使得,取,先证明,即证,令,则在时恒成立,所以成立,因为,所以时命题成立.因为,所以.故实数的最小值为.【点睛】本题考查导数在不等式恒成立、等式能成立中的应用,前者注意将欲证不等式合理变形,转化为容易证明的新不等式,后者需根据等式能成立的特点确定出函数应该具有的性质,再利用导数研究该性质,本题属于难题.20、(1)(2)证明见解析;定点坐标为【解析】
(1)由条件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)由得,.又∴,同理又∴∴∴∴∴∴,此时满足∴∴直线恒过定点【点睛】涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法.21、(1);(2).【解析】
(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,,在梯形中,,则,,,,所以,;(2)取中点,连接、,过点作,则,作于,连接.为的中点,且,,且,所以,四边形为平行四边形,由于,,,,,,,为的中点,所以,,,同理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年外研版2024高二数学下册月考试卷含答案
- 2025中国节能环保集团限公司党委管理领导岗位招聘3人高频重点提升(共500题)附带答案详解
- 2025中国石油宁夏石化分公司高校毕业生招聘42人高频重点提升(共500题)附带答案详解
- 2025中国海油春季校园招聘1900人高频重点提升(共500题)附带答案详解
- 2025中国平安人寿保险股份限公司厦门分公司校园招聘12人高频重点提升(共500题)附带答案详解
- 2025中国农科院植物保护研究所经济作物虫害监测与控制创新团队科研助理公开招聘1人高频重点提升(共500题)附带答案详解
- 2025中国东方电气集团科学技术研究院限公司社会招聘1人高频重点提升(共500题)附带答案详解
- 2025东航集团外事办校园招聘高频重点提升(共500题)附带答案详解
- 2025下半年浙江省温州市鹿城区事业单位招聘(选调)48人历年高频重点提升(共500题)附带答案详解
- 2025下半年安徽蚌埠固镇县事业单位招聘115人高频重点提升(共500题)附带答案详解
- 2024年江西三校生对口升学考试语文试卷真题(含答案详解)
- 【《现金流视角下的绿地集团财务风险防范探究(定量论文)》11000字】
- 重大事故隐患判定标准与相关事故案例培训课件
- 2024至2030年中国冲调饮料行业市场深度研究及投资规划建议报告
- 2023-2024学年黑龙江省哈尔滨市道里区七年级(下)期末数学试卷(五四学制)(含答案)
- SL+290-2009水利水电工程建设征地移民安置规划设计规范
- 水电站施工合同水电站施工合同(2024版)
- 河南省周口市商水县2023-2024学年七年级下学期期末语文试题
- 渭南市白水县2021-2022学年七年级上学期期末考试数学试卷【带答案】
- 2024年美国压力袜市场现状及上下游分析报告
- 2012建设工程造价咨询成果文件质量标准
评论
0/150
提交评论