2025届广西玉林市重点中学高考考前提分数学仿真卷含解析_第1页
2025届广西玉林市重点中学高考考前提分数学仿真卷含解析_第2页
2025届广西玉林市重点中学高考考前提分数学仿真卷含解析_第3页
2025届广西玉林市重点中学高考考前提分数学仿真卷含解析_第4页
2025届广西玉林市重点中学高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广西玉林市重点中学高考考前提分数学仿真卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数满足,且,则不等式的解集为()A. B. C. D.2.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.3.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间4.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.5.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.36.设,,,则,,三数的大小关系是A. B.C. D.7.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.8.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.9.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.10.已知向量,且,则m=()A.−8 B.−6C.6 D.811.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.12.设为等差数列的前项和,若,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,i为虚数单位,则正实数的值为______.14.三棱锥中,点是斜边上一点.给出下列四个命题:①若平面,则三棱锥的四个面都是直角三角形;②若,,,平面,则三棱锥的外接球体积为;③若,,,在平面上的射影是内心,则三棱锥的体积为2;④若,,,平面,则直线与平面所成的最大角为.其中正确命题的序号是__________.(把你认为正确命题的序号都填上)15.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程中,p为“隅”,q为“实”.即若的大斜、中斜、小斜分别为a,b,c,则.已知点D是边AB上一点,,,,,则的面积为________.16.已知实数满足则点构成的区域的面积为____,的最大值为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.18.(12分)已知函数.(1)求的极值;(2)若,且,证明:.19.(12分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.(1)当时,记,求的分布列及数学期望;(2)当,时,求且的概率.20.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.(1)求证:平面;(2)求直线与平面所成的角的正弦值.21.(12分)已知函数.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围.22.(10分)设函数.(1)若函数在是单调递减的函数,求实数的取值范围;(2)若,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.2、D【解析】

根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.3、D【解析】

可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题4、D【解析】

根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.5、B【解析】

过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.6、C【解析】

利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,,,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.7、D【解析】

根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.8、C【解析】

由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.9、D【解析】

列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.10、D【解析】

由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.11、C【解析】

由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.12、C【解析】

根据等差数列的性质可得,即,所以,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用复数模的运算性质,即可得答案.【详解】由已知可得:,,解得.故答案为:.【点睛】本题考查复数模的运算性质,考查推理能力与计算能力,属于基础题.14、①②③【解析】

对①,由线面平行的性质可判断正确;对②,三棱锥外接球可看作正方体的外接球,结合外接球半径公式即可求解;对③,结合题意作出图形,由勾股定理和内接圆对应面积公式求出锥体的高,则可求解;对④,由动点分析可知,当点与点重合时,直线与平面所成的角最大,结合几何关系可判断错误;【详解】对于①,因为平面,所以,,,又,所以平面,所以,故四个面都是直角三角形,∴①正确;对于②,若,,,平面,∴三棱锥的外接球可以看作棱长为4的正方体的外接球,∴,,∴体积为,∴②正确;对于③,设内心是,则平面,连接,则有,又内切圆半径,所以,,故,∴三棱锥的体积为,∴③正确;对于④,∵若,平面,则直线与平面所成的角最大时,点与点重合,在中,,∴,即直线与平面所成的最大角为,∴④不正确,故答案为:①②③.【点睛】本题考查立体几何基本关系的应用,线面垂直的性质及判定、锥体体积、外接球半径求解,线面角的求解,属于中档题15、.【解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求积术”公式即可求得答案.【详解】,所以,由余弦定理可知,得.根据“三斜求积术”可得,所以.【点睛】本题考查正切的和角公式,同角三角函数的基本关系式,余弦定理的应用,考查学生分析问题的能力和计算整理能力,难度较易.16、811【解析】

画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在;详见解析【解析】

(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【详解】(1);(2),若,同号,,不成立;或,异号,,不成立;故不存在实数,,使得,.【点睛】本题考查了分段函数的最值、基本不等式的应用,属于基础题.18、(1)极大值为;极小值为;(2)见解析【解析】

(1)对函数求导,进而可求出单调性,从而可求出函数的极值;(2)构造函数,求导并判断单调性可得,从而在上恒成立,再结合,,可得到,即可证明结论成立.【详解】(1)函数的定义域为,,所以当时,;当时,,则的单调递增区间为和,单调递减区间为.故的极大值为;的极小值为.(2)证明:由(1)知,设函数,则,,则在上恒成立,即在上单调递增,故,又,则,即在上恒成立.因为,所以,又,则,因为,且在上单调递减,所以,故.【点睛】本题考查函数的单调性与极值,考查了利用导数证明不等式,构造函数是解决本题的关键,属于难题.19、(1)见解析,0(2)【解析】

(1)即该选手答完3道题后总得分,可能出现的情况为3道题都答对,答对2道答错1道,答对1道答错2道,3道题都答错,进而求解即可;(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又,则第一题答对,第二题第三题至少有一道答对,进而求解.【详解】解:(1)的取值可能为,,1,3,又因为,故,,,,所以的分布列为:13所以(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又已知,第一题答对,若第二题回答正确,则其余6题可任意答对3题;若第二题回答错误,第三题回答正确,则后5题可任意答对题,此时的概率为(或).【点睛】本题考查二项分布的分布列及期望,考查数据处理能力,考查分类讨论思想.20、(1)证明见解析(2)【解析】

(1)要证明平面,只需证明,即可:(2)取中点,连,以为原点,分别为轴建立空间直角坐标系,分别求出与平面的法向量,再利用计算即可.【详解】(1)∵底面为菱形,∵直棱柱平面.∵平面..平面;(2)如图,取中点,连,以为原点,分别为轴建立如图所示空间直角坐标系:,点,设平面的法向量为,,有,令,得又,设直线与平面所成的角为,所以故直线与平面所成的角的正弦值为.【点睛】本题考查线面垂直的证明以及向量法求线面角的正弦值,考查学生的运算求解能力,本题解题关键是正确写出点的坐标.21、(1)增区间为,减区间为;(2).【解析】

(1)将代入函数的解析式,利用导数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论