锐角三角函数的应用(原卷版)2024-2025学年九年级数学上学期复习讲义(下册)(人教版)_第1页
锐角三角函数的应用(原卷版)2024-2025学年九年级数学上学期复习讲义(下册)(人教版)_第2页
锐角三角函数的应用(原卷版)2024-2025学年九年级数学上学期复习讲义(下册)(人教版)_第3页
锐角三角函数的应用(原卷版)2024-2025学年九年级数学上学期复习讲义(下册)(人教版)_第4页
锐角三角函数的应用(原卷版)2024-2025学年九年级数学上学期复习讲义(下册)(人教版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20242025学年九年级数学上学期同步复习讲义(下册)(人教版)锐角三角函数的应用教学目标1、理解锐角三角函数的定义,掌握锐角三角函数的表示法;2、掌握特殊角的三角函数值,会计算含有特殊角的三角函数的运算式;3、会运用锐角三角函数解直角三角形。教学重难点重点:特殊角的三角函数值、解直角三角形;难点:通过做高线构造直角三角形。教学内容锐角三角函数的应用锐角三角函数的应用知识点一:锐角三角函数的应用1、仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图(1);2、坡角与坡度:坡面的垂直高度和水平宽度的比叫做坡度(或叫做坡比),用字母表示为,坡面与水平面的夹角记作,叫做坡角,则.坡度越大,坡面就越陡.如图(2);3、方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图(3)。考点一:与仰角、俯角有关的实际问题【例1】如图,建筑物AB后有一座小山,∠DCF=30°,测得小山坡脚C点与建筑物水平距离BC=25米,若山坡上E点处有一凉亭,且凉亭与坡脚距离CE=20米,某人从建筑物顶端A点测得E点处的俯角为48°.求建筑物AB的高(精确到0.1m).(参考数据:3≈1.7,sin48°≈0.7,cos48°≈0.6,tan48°≈1.1,sin

【变式训练1】河南省登封市境内的嵩岳寺塔是中国现存年代最久的佛塔,堪称世界上最早的筒体建筑.某校数学社闭的同学利用所学知识来测量嵩岳寺塔的高度,如图,CD是嵩岳寺塔附近不远处的某建筑物,他们在建筑物CD底端D处利用测角仪测得嵩岳寺塔顶端B的仰角为60°,在建筑物CD顶端C处利用测角仪测得嵩岳寺塔底端A的俯角为35°,已知建筑物CD的高为15米,AB⊥AD,CD⊥AD,点A,D在同一水平线上,求嵩岳寺塔AB的高度.(结果精确到0.1m,参考数据:sin

【变式训练2】某校数学兴趣小组借助无人机测量一条河流的宽度CD,如图所示,一架水平飞行的无人机在A处测得正前方河流的左岸C处的俯角为α,无人机沿水平线AF方向继续飞行60米至B处,测得正前方河流右岸D处的俯角为30°.线段AM的长为无人机距地面的垂直高度,点M,C,D在同一条直线上,其中tanα=3,MC=60

(1)求无人机的飞行高度AM;(结果保留根号)(2)求河流的宽度CD.(结果精确到0.1米,参考数据:2≈1.41,3考点二:与坡角、坡比有关的应用问题【例2】如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E点距地面5m,从E点处测得D点俯角为30°,斜面ED长为4m,水平面DC长为2m,斜面BC的坡度为1∶4,求处于同一水平面上引桥底部AB的长.(结果精确到0.1m,2≈1.41,3≈1.73)【变式训练1】如图,某地下车库的入口处有斜坡AB,它的坡度为i=1:2,斜坡AB的长为65m,斜坡的高度为AHAH⊥BC,为了让行车更安全,现将斜坡的坡角改造为14°

(1)求车库的高度AH;(2)求点B与点C之间的距离(结果精确到1m,参考数据:sin14°≈0.24,cos14°≈0.97【变式训练2】如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔的高度,他从古塔底部点处前行到达斜坡的底部点处,然后沿斜坡前行到达最佳测量点处,在点处测得塔顶的仰角为,已知斜坡的斜面坡度,且点,,,,在同一平面内,求古塔的高度。考点三:与方位角有关的实际问题【例3】如图,某巡逻艇在海上例行巡逻,上午10时在C处接到海上搜救中心从B处发来的救援任务,此时事故船位于B处的南偏东25°方向上的A处,巡逻艇位于B处的南偏西28°方向上1260米处,事故船位于巡逻艇的北偏东58°方向上,巡逻艇立刻前往A处救援,已知巡逻艇每分钟行驶120米,请估计几分钟可以到达事故船A处.(结果保留整数.参考数据:3≈1.73,sin53°≈45,【变式训练1】如图所示,A、B两城市相距200km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:≈1.732,≈1.414)【变式训练2】小明和小华约定一同去公园游玩,公园有南北两个门,北门A在南门B的正北方向,小明自公园北门A处出发,沿南偏东方向前往游乐场D处;小华自南门B处出发,沿正东方向行走到达C处,再沿北偏东方向前往游乐场D处与小明汇合(如图所示),两人所走的路程相同.求公园北门A与南门B之间的距离.(结果取整数.参考数据:,,,)考点四:解直角三角形的应用之实物建模问题【例4】如图1是某工厂生产的某种多功能儿童车,根据需要可变形为滑板车或三轮车,图2、图3是其示意图,已知前后车轮半径相同,车杆AB的长为60cm,点D是AB的中点,前支撑板DE=30cm,后支撑板EC=40cm,车杆AB与BC所成的

(1)如图2,当支撑点E在水平线BC上时,支撑点E与前轮轴心B之间的距离BE的长;(2)如图3,当座板DE与地面保持平行时,问变形前后两轴心BC的长度有没有发生变化?若不变,请通过计算说明;若变化,请求出变化量.(参考数据:sin53°≈45,cos

【变式训练1】我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿摆成如图1所示.已知,鱼竿尾端A离岸边,即.海面与地面平行且相距,即.(1)如图1,在无鱼上钩时,海面上方的鱼线与海面的夹角,海面下方的鱼线与海面垂直,鱼竿与地面的夹角.求点O到岸边的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角,此时鱼线被拉直,鱼线,点O恰好位于海面.求点O到岸边的距离.(参考数据:,,,,,)【变式训练2】某数学小组要测量学校路灯P﹣M﹣N的顶部到地面的距离,他们借助皮尺、测角仪进行测量,测量结果如下:测量项目测量数据从A处测得路灯顶部P的仰角αα=58°从D处测得路灯顶部P的仰角ββ=31°测角仪到地面的距离AB=DC=1.6m两次测量时测角仪之间的水平距离BC=2m计算路灯顶部到地面的距离PE约为多少米?(结果精确到0.1米.参考数据:cos31°≈0.86,tan31°≈0.60,cos58°≈0.53,tan58°≈1.60)1、交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)2、下图是测温员使用测温枪的侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP

(1)求∠PMB的度数;(2)测温时规定枪身端点,A与额头距离范围为3~5cm,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点(参考数据:sin66.4°≈0.92,3、如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35′.求堤坝高及山高DE.(sin26°35′

4、如图,一艘军舰在A处测得小岛P位于南偏东60°方向,向正东航行40海里后到达B处,此时测得小岛P位于南偏西75°方向,求小岛P离观测点B的距离.5、图①是一种平板支架,由托板、支撑板和底座构成,放置在托板上,图②是其侧面结构示意图,托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)6、钓鱼是修身养性的户外休闲运动,闲暇之余,流连于江河湖泊之间,鸟语花香,玉树葱葱,享受大自然,怡然自乐…,“劝君莫食三月鲫,万千鱼仔鱼腹中”,钓鱼是一种心情,钓获放流是一种境界!如图一静待鲤鱼上钩:AB是鱼竿,BC、CD是鱼线,EH是水面,点B、点C分别在矩形EFDH的一组邻边上,AF⊥EH,AB=8米,AF=7米,C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论