版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省鸡泽、曲周、邱县、馆陶四县2025届高考数学一模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是()A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列2.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.3.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141432341342234142243331112322342241244431233214344142134412由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.4.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.5.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.6.已知数列满足,(),则数列的通项公式()A. B. C. D.7.若的展开式中的系数为-45,则实数的值为()A. B.2 C. D.8.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则()A. B. C. D.9.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则()A., B.,C., D.,10.已知函数,若则()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)11.已知复数满足,则的值为()A. B. C. D.212.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足对任意,若,则数列的通项公式________.14.已知集合,,则_________.15.春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设为其中成活的株数,若的方差,,则________.16.已知命题:,,那么是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.18.(12分)已知函数,若的解集为.(1)求的值;(2)若正实数,,满足,求证:.19.(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)20.(12分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.21.(12分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.22.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由折线图逐项分析即可求解【详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题2、A【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.3、A【解析】
由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.【详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为.故选:A.【点睛】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.4、B【解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.5、C【解析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.6、A【解析】
利用数列的递推关系式,通过累加法求解即可.【详解】数列满足:,,可得以上各式相加可得:,故选:.【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.7、D【解析】
将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】∵所以展开式中的系数为,∴解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.8、A【解析】
根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.9、C【解析】
根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,,所以.表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.10、C【解析】
利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.【详解】因为,所以在上单调递增;在同一坐标系中作与图象,,可得,故.故选:C【点睛】本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.11、C【解析】
由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.12、B【解析】
根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,,不成立,运行第二次,,不成立,运行第三次,,不成立,运行第四次,,不成立,运行第五次,,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.【详解】由,得,数列是等比数列,首项为2,公比为2,,,,,满足上式,.故答案为:.【点睛】本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.14、【解析】
根据交集的定义即可写出答案。【详解】,,故填【点睛】本题考查集合的交集,需熟练掌握集合交集的定义,属于基础题。15、【解析】
由题意可知:,且,从而可得值.【详解】由题意可知:∴,即,∴故答案为:【点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题.16、真命题【解析】
由幂函数的单调性进行判断即可.【详解】已知命题:,,因为在上单调递增,则,所以是真命题,故答案为:真命题【点睛】本题主要考查了判断全称命题的真假,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,,所以.(2)由为方程的两个实根,得,两式相减,可得,因此,令,由,得,则,构造函数.则,所以函数在上单调递增,故,即,可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.18、(1);(2)证明见详解.【解析】
(1)将不等式的解集用表示出来,结合题中的解集,求出的值;(2)利用柯西不等式证明.【详解】解:(1),,,因为的解集为,所以,;(2)由(1)由柯西不等式,当且仅当,,,等号成立.【点睛】本题考查了绝对值不等式的解法,利用柯西不等式证明不等式的问题,属于中档题.19、(1);(2)证明见解析.【解析】
(1)求出函数的定义域为,,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函数的定义域为,且.当时,对任意的,,此时函数在上为增函数,函数为最大值;当时,令,得.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,,定义域为,,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,,,构造函数,其中,,令,,当时,,所以,函数在区间上单调递减,则,则.所以,函数在区间上单调递减,,,即,即,,且,而函数在上为减函数,所以,,因此,.【点睛】本题考查利用函数的最值求参数,同时也考查了利用导数证明函数不等式,利用所证不等式的结构构造新函数是解答的关键,考查推理能力与计算能力,属于难题.20、(1);(2)见解析【解析】
(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果;(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.【详解】(1),由,记,,由,且时,,单调递减,,时,,单调递增,,由题意,方程有两个不同解,所以;(2)解法一:由(1)知,在区间上存在极大值点,且,所以的极大值为,记,则,因为,所以,所以时,,单调递减,时,,单调递增,所以,即函数的极大值不小于1.解法二:由(1)知,在区间上存在极大值点,且,所以的极大值为,因为,,所以.即函数的极大值不小于1.【点睛】本题考查导数研究函数的单调性,极值,考查学生综合分析能力与转化能力,是一道中档题.21、(1)见解析;(2)【解析】
(1)要证明PC⊥面ADE,由已知可得AD⊥PC,只需满足即可,从而得到点E为中点;(2)求出面ADE的法向量,面PAE的法向量,利用空间向量的数量积,求解二面角P﹣AE﹣D的余弦值.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省宿迁市沭阳县2024-2025学年三年级上学期期末学情检测数学试题参考答案
- 工业用纸包装、复合塑料包装和新材料生产建设项目可行性研究报告写作模板-申批备案
- 2025年度3个合伙人联合开发环保项目合作协议书3篇
- 2025年度123法律APP下载与法律知识库订阅合同3篇
- 2024第三方房屋抵押担保合同
- 2024钢管架搭设施工合同
- 2025厂区绿化养护与生态修复技术培训服务合同3篇
- 2024版水电暖承包合同范本
- 2024食品厂员工劳动合同签订与解除程序合同3篇
- 2024高速公路路侧广告投放合同
- 福建省福州市2023-2024学年高一1月期末生物试题(解析版)
- 四川省南充市2023-2024学年高一上学期期末考试 政治 含解析
- 合伙开店协议合同完整版
- 医院药品追溯管理制度
- 三甲医院临床试验机构GCP 2024消化内科专业010急性药物性肾损伤应急预案
- 科学研究方法论学习通超星期末考试答案章节答案2024年
- 法律知识图谱构建
- 物理八年级上册凸透镜成像的规律(课件)
- 2024-2025学年新教材高中地理 第3单元 区域联系与区域发展 第1节 大都市辐射对区域发展的影响-以上海市为例说课稿 鲁教版选择性必修2
- 失业保险待遇申领表
- 2024年执业医师考试-中医执业医师考试近5年真题集锦(频考类试题)带答案
评论
0/150
提交评论