浙江省绍兴市重点中学2025届高三(最后冲刺)数学试卷含解析_第1页
浙江省绍兴市重点中学2025届高三(最后冲刺)数学试卷含解析_第2页
浙江省绍兴市重点中学2025届高三(最后冲刺)数学试卷含解析_第3页
浙江省绍兴市重点中学2025届高三(最后冲刺)数学试卷含解析_第4页
浙江省绍兴市重点中学2025届高三(最后冲刺)数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市重点中学2025届高三(最后冲刺)数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知(),i为虚数单位,则()A. B.3 C.1 D.52.在中,角、、所对的边分别为、、,若,则()A. B. C. D.3.已知,,则()A. B. C.3 D.44.若复数满足(是虚数单位),则()A. B. C. D.5.抛物线的准线方程是,则实数()A. B. C. D.6.对于任意,函数满足,且当时,函数.若,则大小关系是()A. B. C. D.7.下列图形中,不是三棱柱展开图的是()A. B. C. D.8.已知为虚数单位,实数满足,则()A.1 B. C. D.9.下列四个图象可能是函数图象的是()A. B. C. D.10.若时,,则的取值范围为()A. B. C. D.11.一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有()A. B. C. D.12.已知全集,则集合的子集个数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足,则的展开式中的系数为______.14.已知集合,,则__________.15.正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为.①,使得;②直线与直线所成角的正切值的取值范围是;③与平面所成锐二面角的正切值为;④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.其中正确命题的序号是________.(写出所有正确命题的序号)16.已知,为正实数,且,则的最小值为________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.18.(12分)已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明函数存在唯一的极大值点,且.19.(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.20.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值.21.(12分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.22.(10分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.(1)若当时,,求此时的值;(2)设,且.(i)试将表示为的函数,并求出的取值范围;(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.2、D【解析】

利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.3、A【解析】

根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.4、B【解析】

利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.5、C【解析】

根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.6、A【解析】

由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.【详解】对于任意,函数满足,因为函数关于点对称,当时,是单调增函数,所以在定义域上是单调增函数.因为,所以,.故选:A.【点睛】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题..7、C【解析】

根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.8、D【解析】,则故选D.9、C【解析】

首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】∵的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,∵为奇函数,图象关于原点对称,∴的图象关于点成中心对称.可排除A、D项.当时,,∴B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.10、D【解析】

由题得对恒成立,令,然后分别求出即可得的取值范围.【详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,,又在单调递增,,的取值范围为.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.11、B【解析】

计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.12、C【解析】

先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数.【详解】由题意,.∴的展开式中的系数为.故答案为:1.【点睛】本题考查二项式定理,掌握二项式定理的应用是解题关键.14、【解析】

直接根据集合和集合求交集即可.【详解】解:,,所以.故答案为:【点睛】本题考查集合的交集运算,是基础题.15、①②③④【解析】

取中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:①利用等腰三角形的性质即可判断;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;③由,取为中点,则,则即为与平面所成的锐二面角,进而求解;④由平行的性质及图形判断即可.【详解】取中点,连接,则,所以,所以平面即为平面,取中点,中点,连接,则易证得,所以平面平面,所以点的运动轨迹为线段,平面即为平面.①取为中点,因为是等腰三角形,所以,又因为,所以,故①正确;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,当点为中点时,直线与直线所成角最小,此时,;当点与点或点重合时,直线与直线所成角最大,此时,所以直线与直线所成角的正切值的取值范围是,②正确;③与平面的交线为,且,取为中点,则即为与平面所成的锐二面角,,所以③正确;④正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以④正确.故答案为:①②③④【点睛】本题考查直线与平面的空间位置关系,考查异面直线成角,二面角,考查空间想象能力与转化思想.16、【解析】

由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)将不等式化为,利用零点分段法,求得不等式的解集.(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.【详解】(1)∵,∴,即当时,不等式化为,∴当时,不等式化为,此时无解当时,不等式化为,∴综上,原不等式的解集为(2)要证,恒成立即证,恒成立∵的最小值为-2,∴只需证,即证又∴成立,∴原题得证【点睛】本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;考查化归与转化,分类与整合思想.18、(1)(2)证明见解析【解析】

(1)求导,可得(1),(1),结合已知切线方程即可求得,的值;(2)利用导数可得,,再构造新函数,利用导数求其最值即可得证.【详解】(1)函数的定义域为,,则(1),(1),故曲线在点,(1)处的切线方程为,又曲线在点,(1)处的切线方程为,,;(2)证明:由(1)知,,则,令,则,易知在单调递减,又,(1),故存在,使得,且当时,,单调递增,当,时,,单调递减,由于,(1),(2),故存在,使得,且当时,,,单调递增,当,时,,,单调递减,故函数存在唯一的极大值点,且,即,则,令,则,故在上单调递增,由于,故(2),即,.【点睛】本题考查导数的几何意义以及利用导数研究函数的单调性,极值及最值,考查推理论证能力,属于中档题.19、(1);(2)见解析.【解析】

(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可.(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三角形相似,证明结论,即可.【详解】(Ⅰ)设椭圆的半焦距为,由椭圆的离心率为知,,∴椭圆的方程可设为.易求得,∴点在椭圆上,∴,解得,∴椭圆的方程为.(Ⅱ)当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由(Ⅰ)知,,,∴.当过点且与圆相切的切线斜率存在时,可设切线的方程为,,∴,即.联立直线和椭圆的方程得,∴,得.∵,∴,,∴.综上所述,圆上任意一点处的切线交椭圆于点,都有.在中,由与相似得,为定值.【点睛】本道题考查了椭圆方程的求解,考查了直线与椭圆位置关系,考查了向量的坐标运算,难度偏难.20、(1)见解析;(2).【解析】

(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;

2建立空间直角坐标系,利用向量知识求解即可.【详解】(1)证明:∵四边形是菱形,,平面平面,又是的中点,,又平面(2)∴直线与平面所成的角等于直线与平面所成的角.平面,∴直线与平面所成的角为,即.因为,则在等腰直角三角形中,所以.在中,由得,以为原点,分别以为轴建立空间直角坐标系.则所以设平面的一个法向量为,则,可得,取平面的一个法向量为,则,所以二面角的正弦值的大小为.(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出.)【点睛】本题主要考查了线面垂直的判定以及二面角的求解,属于中档题.21、(1),表示圆心为,半径为的圆;(2)【解析】

(1)根据参数得到直角坐标系方程,再转化为极坐标方程得到答案.(2)直线方程为,计算圆心到直线的距离加上半径得到答案.【详解】(1),即,化简得到:.即,表示圆心为,半径为的圆.(2),即,圆心到直线的距离为.故曲线上的点到直线的最大距离为.【点睛】本题考查了参数方程,极坐标方程,直线和圆的距离的最值,意在考查学生的计算能力和应用能力.22、(1);(2)(i),;(ii).【解析】

(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,两式相加

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论