版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南八市2025届高三第二次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17642.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户3.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3 B. C. D.4.对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是()A.或 B.C.或 D.5.已知,,,,.若实数,满足不等式组,则目标函数()A.有最大值,无最小值 B.有最大值,有最小值C.无最大值,有最小值 D.无最大值,无最小值6.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A. B. C. D.7.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或98.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.9.双曲线的一条渐近线方程为,那么它的离心率为()A. B. C. D.10.已知向量,,则向量与的夹角为()A. B. C. D.11.若,满足约束条件,则的最大值是()A. B. C.13 D.12.双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中二项式系数最大的项的系数为_________(用数字作答).14.三所学校举行高三联考,三所学校参加联考的人数分别为160,240,400,为调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在学校抽取的数学成绩的份数为30,则抽取的样本容量为____________.15.已知向量,,若向量与向量平行,则实数___________.16.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.(1)若数列是常数列,,,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),.求证:对任意的恒成立.18.(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数,对于符合题意的任意,当时均有?若存在,求出所有的值;若不存在,请说明理由.19.(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.20.(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.21.(12分)已知.(1)当时,求不等式的解集;(2)若,,证明:.22.(10分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为直径的圆上,且,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.2、D【解析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.3、C【解析】
根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.4、C【解析】
根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.【详解】由得,.令,则,令,解得,所以当时,,则在内单调递增;当时,,则在内单调递减;所以在处取得极大值,即最大值为,则的图象如下图所示:由有且仅有一个不动点,可得得或,解得或.故选:C【点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.5、B【解析】
判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况.【详解】由,,所以可得.,所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值.故选:B【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.6、B【解析】
由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B【点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.7、C【解析】
由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.8、C【解析】
求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.9、D【解析】
根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】∵双曲线的一条渐近线方程为,可得,∴,∴双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.10、C【解析】
求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.11、C【解析】
由已知画出可行域,利用目标函数的几何意义求最大值.【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.12、A【解析】
根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.二、填空题:本题共4小题,每小题5分,共20分。13、5670【解析】
根据二项式展开的通项,可得二项式系数的最大项,可求得其系数.【详解】二项展开式一共有项,所以由二项式系数的性质可知二项式系数最大的项为第5项,系数为.故答案为:5670【点睛】本题考查了二项式定理展开式的应用,由通项公式求二项式系数,属于中档题.14、【解析】
某层抽取的人数等于该层的总人数乘以抽样比.【详解】设抽取的样本容量为x,由已知,,解得.故答案为:【点睛】本题考查随机抽样中的分层抽样,考查学生基本的运算能力,是一道容易题.15、【解析】
由题可得,因为向量与向量平行,所以,解得.16、135【解析】
根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.【详解】根据题意先确定2个人位置不变,共有种选择.再确定4个人坐4个位置,但是不能坐原来的位置,共有种选择,故不同的坐法有.故答案为:.【点睛】本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析;(3)详见解析.【解析】
(1)根据,可求得,再根据是常数列代入根据通项与前项和的关系求解即可.(2)取,并结合通项与前项和的关系可求得再根据化简可得,代入化简即可知,再证明也成立即可.(3)由(2)当时,,代入所给的条件化简可得,进而证明可得,即数列是等比数列.继而求得,再根据作商法证明即可.【详解】解:.是各项不为零的常数列,则,则由,及得,当时,,两式作差,可得.当时,满足上式,则;证明:,当时,,两式相减得:即.即.又,,即.当时,,两式相减得:.数列从第二项起是公差为的等差数列.又当时,由得,当时,由,得.故数列是公差为的等差数列;证明:由,当时,,即,,,即,即,当时,即.故从第二项起数列是等比数列,当时,..另外,由已知条件可得,又,,因而.令,则.故对任意的恒成立.【点睛】本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.18、(1);(2).【解析】
(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此,,最后根据导数研究对应函数单调性,确定对应函数最值,即得取值集合.【详解】(1),当时,对恒成立,与题意不符,当,,∴时,即函数在单调递增,在单调递减,∵和时均有,∴,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,,且,∴,故,又∵,令,则,且恒成立,令,而,∴时,时,∴,令,若,则时,,即函数在单调递减,∴,与不符;若,则时,,即函数在单调递减,∴,与式不符;若,解得,此时恒成立,,即函数在单调递增,又,∴时,;时,符合式,综上,存在唯一实数符合题意.【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.19、(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【解析】
(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【详解】解:(1)函数的定义域为由已知得,则,解得.(2)由题意得,则.当时,,所以单调递减,当时,,所以单调递增,所以,单调递减区间为,单调递增区间为,的极小值为,无极大值.(3)要证成立,只需证成立.令,则,当时,单调递增,当时,单调递减,所以的极大值为,即由(2)知,时,,且的最小值点与的最大值点不同,所以,即.所以,.【点睛】知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 扬州大学《自动控制与建筑设备自动化》2023-2024学年第一学期期末试卷
- 扬州环境资源职业技术学院《国际贸易货运代理实务》2023-2024学年第一学期期末试卷
- 《天沔花鼓戏的传承与保护研究》
- 2024夜景照明节能技术合作协议3篇
- 2024年电子竞技赛事赞助与承办权转让合同
- 2024年度赠与环保科技创新基金协议3篇
- 2025广告牌维修合同范文
- 2025建筑工程总承包合同2
- 2024年物流运输合伙经营合作协议书3篇
- 2025某某公司培训项目外包合同【HRM专业资料】
- 全球半导体制造类eda行业发展白皮书-沙利文-2024120
- 人教版六年级上册数学-分数乘除法-应用题专练
- 胆囊术后并发症护理
- 原始地形测量合同模板
- 江西省赣州市2022-2023学年四年级上学期期末数学试卷
- 凿壁偷光儿童故事绘本
- 《THPJC-2型机床电气技能实训考核鉴定装置》-X62W万能铣床电气线路分析及故障排除与分析
- 《记念刘和珍君》高中语文选择性必修中册
- 2024六年级英语上册 Module 9 Unit 1 Do you want to visit the UN building教案 外研版(三起)
- 2024年广东省高中学业水平合格性考试语文试卷真题(含答案解析)
- 传感器应用技术智慧树知到期末考试答案章节答案2024年淄博职业学院
评论
0/150
提交评论