版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三亚市重点中学2025届高考适应性考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,函数在区间上恰有个极值点,则正实数的取值范围为()A. B. C. D.2.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.3.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.4.设复数z=,则|z|=()A. B. C. D.5.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.46.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降7.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是()A. B. C. D.8.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180 B.90 C.45 D.3609.若满足,且目标函数的最大值为2,则的最小值为()A.8 B.4 C. D.610.已知向量,,则向量在向量上的投影是()A. B. C. D.11.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.12.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.14.双曲线的焦距为__________,渐近线方程为________.15.的二项展开式中,含项的系数为__________.16.已知双曲线的渐近线与准线的一个交点坐标为,则双曲线的焦距为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,,交于点.求证:~.18.(12分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.①求数列的通项公式;②求证:.19.(12分)已知椭圆C:()的左、右焦点分别为,,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.20.(12分)设为抛物线的焦点,,为抛物线上的两个动点,为坐标原点.(Ⅰ)若点在线段上,求的最小值;(Ⅱ)当时,求点纵坐标的取值范围.21.(12分)已知函数.当时,求不等式的解集;,,求a的取值范围.22.(10分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
先利用向量数量积和三角恒等变换求出,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围.【详解】解:令,解得对称轴,,又函数在区间恰有个极值点,只需解得.故选:.【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或的形式;(2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.2、A【解析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.3、B【解析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.4、D【解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.5、D【解析】
先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.6、D【解析】
根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.7、C【解析】
根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.8、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.考点:1.二项式定理;2.组合数的计算.9、A【解析】
作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得..,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.10、A【解析】
先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.11、D【解析】
由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.12、D【解析】
根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到故答案为:D.【点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.【点睛】该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.14、6【解析】由题得所以焦距,故第一个空填6.由题得渐近线方程为.故第二个空填.15、【解析】
写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.16、1【解析】
由双曲线的渐近线,以及求得的值即可得答案.【详解】由于双曲线的渐近线与准线的一个交点坐标为,所以,即①,把代入,得,即②又③联立①②③,得.所以.故答案是:1.【点睛】本题考查双曲线的性质,注意题目“双曲线的渐近线与准线的一个交点坐标为”这一条件的运用,另外注意题目中要求的焦距即,容易只计算到,就得到结论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析【解析】
根据相似三角形的判定定理,已知两个三角形有公共角,题中未给出线段比例关系,故可根据判定定理一需找到另外一组相等角,结合平面几何的知识证得即可.【详解】证明:∵,所以,又因为,所以.在与中,,,故~.【点睛】本题考查平面几何中同弧所对的圆心角与圆周角的关系、相似三角形的判定定理;考查逻辑推理能力和数形结合思想;分析图形,找出角与角之间的关系是证明本题的关键;属于基础题.18、(1);(2)①;②详见解析.【解析】
(1)依题意可表示,,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根;(2)①由题意可表示,,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;②由已知关系,表示并相减即可表示递推关系,显然当时,成立,当,时,表示,由分组求和与正项数列性质放缩不等式得证.【详解】解:(1)依题意可得,,两式相减,得,所以,因为,所以,且,解得.(2)①因为,所以,两式相减,得,即.因为,所以,即.而当时,,可得,故,所以对任意的正整数都成立,所以数列是等差数列,公差为1,首项为1,所以数列的通项公式为.②因为,所以,两式相减,得,即,所以对任意的正整数,都有.令,而当时,显然成立,所以当,时,,所以,即,所以,得证.【点睛】本题考查由前n项和关系求等比数列公比,求等差数列通项公式,还考查了由分组求和表示数列和并由正项数列放缩证明不等式,属于难题.19、(1)(2)直线l的斜率为或【解析】
(1)根据已知列出方程组即可解得椭圆方程;(2)设直线方程,与椭圆方程联立,转化为,借助向量的数量积的坐标表示,及韦达定理即可求得结果.【详解】(1)由题意得解得故椭圆C的方程为.(2)直线l的方程为,设,,则由方程组消去y得,,所以,,由,得,所以,又所以,即所以,因此,直线l的斜率为或.【点睛】本题考查椭圆的标准方程,考查直线和椭圆的位置关系,考查学生的计算求解能力,难度一般.20、(Ⅰ)(Ⅱ)【解析】
(1)由抛物线的性质,当轴时,最小;(2)设点,,分别代入抛物线方程和得到三个方程,消去,得到关于的一元二次方程,利用判别式即可求出的范围.【详解】解:(1)由抛物线的标准方程,,根据抛物线的性质,当轴时,最小,最小值为,即为4.(2)由题意,设点,,其中,.则,①,②因为,,,所以.③由①②③,得,由,且,得,解不等式,得点纵坐标的范围为.【点睛】本题主要考查抛物线的方程和性质和二次方程的解的问题,考查运算能力,此类问题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等,易错点是复杂式子的变形能力不足,导致错解.21、(1);(2).【解析】
(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 扬州大学广陵学院《细胞生物学与细胞培养技术实验一》2023-2024学年第一学期期末试卷
- 2024年员工无息借款与员工发展计划合同3篇
- 2025房地产合同协议书
- 2025驾驶员聘用合同范本下载
- 2024年碎石供应商与道路施工方合同
- 2025江苏省农药购买合同范本
- 2024小学双语教学教师职位聘用合同范本2篇
- 2024年03月上海民生银行上海分行社会招考(322)笔试历年参考题库附带答案详解
- 2024学校教育资源共享平台建设专家聘用合同3篇
- 2024年直播平台主播分成合同3篇
- 领导干部廉政知识竞赛题库及答案
- 降低锐器盒不规肾内科品管圈课件
- 《了凡四训》课件
- 2ttk7d6.0gd空调装置使用维护说明书法补充
- 重大火灾隐患判定培训课件
- 经济思想史课后习题答案
- 大学生就业与创业指导课件
- 如何理解欧盟MDR临床评价要求
- (新平台)国家开放大学《政治学原理》形考任务1-4参考答案
- 被动用法学习课件 高中日语人教版第三册
- 清华大学电力系统分析课件孙宏斌
评论
0/150
提交评论