版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题41几何问题(2)之综合问题专题41几何问题(2)之综合问题题型精讲题型精讲题型一:材料阅读创新【例1】(2021·湖北中考真题)问题提出如图(1),在和中,,,,点在内部,直线与交于点,线段,,之间存在怎样的数量关系?问题探究(1)先将问题特殊化.如图(2),当点,重合时,直接写出一个等式,表示,,之间的数量关系;(2)再探究一般情形.如图(1),当点,不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在和中,,,(是常数),点在内部,直线与交于点,直接写出一个等式,表示线段,,之间的数量关系.【答案】(1).(2)见解析;问题拓展:.【分析】(1)先证明△BCE≌△ACD,得到AF=BE,BF-BE=BF-AF=EF=;(2)过点作交于点,证明,,是等腰直角三角形即可;利用前面的方法变全等为相似证明即可.【详解】问题探究(1).理由如下:如图(2),∵∠BCA=∠ECF=90°,∴∠BCE=∠ACF,∵BC=AC,EC=CF,△BCE≌△ACF,∴BE=AF,∴BF-BE=BF-AF=EF=;(2)证明:过点作交于点,则,∴.∵,∴.又∵,,∴,∴.∴.∴,,∴是等腰直角三角形.∴.∴.问题拓展.理由如下:∵∠BCA=∠ECD=90°,∴∠BCE=∠ACD,∵BC=kAC,EC=kCD,∴△BCE∽△ACD,∴∠EBC=∠FAC,过点作交于点M,则,∴.∴△BCM∽△ACF,∴BM:AF=BC:AC=MC:CF=k,∴BM=kAF,MC=kCF,∴BF-BM=MF,MF==∴BF-kAF=.【例2】(2021·浙江中考真题)(证明体验)(1)如图1,为的角平分线,,点E在上,.求证:平分.(思考探究)(2)如图2,在(1)的条件下,F为上一点,连结交于点G.若,,,求的长.(拓展延伸)(3)如图3,在四边形中,对角线平分,点E在上,.若,求的长.【答案】(1)见解析;(2);(3)【分析】(1)根据SAS证明,进而即可得到结论;(2)先证明,得,进而即可求解;(3)在上取一点F,使得,连结,可得,从而得,可得,,最后证明,即可求解.【详解】解:(1)∵平分,∴,∵,∴,∴,∴,∴,即平分;(2)∵,∴,∵,∴,∴.∵,∴.∵,∴;(3)如图,在上取一点F,使得,连结.∵平分,∴∵,∴,∴.∵,∴.∵,∴,∴.∵,∴.∵,又∵,∴∴,∴,∴.题型二:定义材料阅读【例3】(2020•北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=3x+23上,记线段AB到⊙O的“平移距离”为d1,求d1(3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2【分析】(1)根据平移的性质,以及线段AB到⊙O的“平移距离”的定义判断即可.(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=3x+23交x轴于M,交y轴于N.则M(﹣2,0),N(0,23),过点E作EH⊥MN于H,解直角三角形求出EH(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′和等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,点A′与M重合时,AA′的值最小,当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.解直角三角形求出AA′即可.【解析】(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2∥P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O的“平移距离”.故答案为:P1P2∥P3P4,P3.(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=3x+23交x轴于M,交y轴于N.则M(﹣2,0),N(0,23过点E作EH⊥MN于H,∵OM=2,ON=23,∴tan∠NMO=3∴∠NMO=60°,∴EH=EM•sin60°=3观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为32(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′,等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,当点A′与M重合时,AA′的值最小,最小值=OA﹣OM=52−当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.由题意A′H=32,AH∴AA′的最大值=(∴32≤d2题型三:操作材料阅读【例4】(2021·吉林中考真题)实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:.(2)若,则线段AP的长为.【答案】操作一:45°,操作二:60°;(1)证明见解析;(2)【分析】操作一:直接利用折叠的性质,得出两组全等三角形,从而得出,,从而得出∠EAF的值;操作二:根据折叠的性质得出,从而得出,即可求得的度数;(1)首先利用,得出,则,从而得出△ANF为等腰直角三角形,即可证得;(2)利用三角函数或者勾股定理求出BE的长,则,设DF=x,那么FC=,在Rt△EFC中,利用勾股定理得出DF的长,也就是MF的长,即可求得EF的长,进而可得结果.【详解】操作一:45°,证明如下:∵折叠得到,折叠得到,∴,∴,∴,故填:45°;操作二:60°,证明如下:∵,∴,又∵沿着EF折叠得到,∴,∴,∴,故填:60°;(1)证明:由上述证明得,,∴,∵四边形ABCD为正方形,∴∠C=∠D=90°,∴,,又∵,∴,在和中,∵,∴,∴,∴,∴,∴为等腰直角三角形,即AN=NF,在和中:∵∴(2)由题可知是直角三角形,,∴,解得BE=1,∴BE=EM=1,,设DF=x,则MF=x,CF=,在Rt△CEF中,,解得x=,则,∵∴AP=EF=.【例5】(2021·青海中考真题)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作等大小的角,可以采用如下方法:操作感知:第一步:对折矩形纸片,使与重合,得到折痕,把纸片展开(如图13-1).第二步:再一次折叠纸片,使点落在上,并使折痕经过点,得到折痕,同时得到线段(如图13-2).猜想论证:(1)若延长交于点,如图13-3所示,试判定的形状,并证明你的结论.拓展探究:(2)在图13-3中,若,当满足什么关系时,才能在矩形纸片中剪出符(1)中的等边三角形?【答案】(1)是等边三角形,理由见解析;(2),理由见解析【分析】(1)连接,由折叠性质可得是等边三角形,,,然后可得到,即可判定是等边三角形.(2)由折叠可知,由(1)可知,利用的三角函数即可求得.【详解】(1)解:是等边三角形,证明如下:连接.由折叠可知:,垂直平分.∴,∴,∴为等边三角形,∴,∴,∵,,∴,∴,∴是等边三角形.(2)解:方法一:要在矩形纸片上剪出等边,则,在中,,,∴,∵,∴,即,当或()时,在矩形纸片上能剪出这样的等边.方法二:要在矩形纸片上剪出等边,则,在中,,,设,则,∴,即,得,∴,∵,∴,即,当(或)时,在矩形纸片上能剪出这样的等边.提分作业提分作业1.(2021·山西中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在中,,垂足为,为的中点,连接,,试猜想与的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将沿着(为的中点)所在直线折叠,如图②,点的对应点为,连接并延长交于点,请判断与的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将沿过点的直线折叠,如图③,点A的对应点为,使于点,折痕交于点,连接,交于点.该小组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果.【答案】(1);见解析;(2),见解析;(3).【分析】(1)如图,分别延长,相交于点P,根据平行四边形的性质可得,根据平行线的性质可得,,利用AAS可证明△PDF≌△BCF,根据全等三角形的性质可得,根据直角三角形斜边中线的性质可得,即可得;(2)根据折叠性质可得∠CFB=∠C′FB=∠CFC′,FC=FC′,可得FD=FC′,根据等腰三角形的性质可得∠FDC′=∠FC′D,根据三角形外角性质可得∠CFC′=∠FDC′+∠FC′D,即可得出∠C′FB=∠FC′D,可得DG//FB,即可证明四边形DGBF是平行四边形,可得DF=BG=,可得AG=BG;(3)如图,过点M作MQ⊥A′B于Q,根据平行四边形的面积可求出BH的长,根据折叠的性质可得A′B=AB,∠A=∠A′,∠ABM=∠MBH,根据可得A′B⊥AB,即可证明△MBQ是等腰直角三角形,可得MQ=BQ,根据平行四边形的性质可得∠A=∠C,即可得∠A′=∠C,进而可证明△A′NH∽△CBH,根据相似三角形的性质可得A′H、NH的长,根据NH//MQ可得△A′NH∽△A′MQ,根据相似三角形的性质可求出MQ的长,根据S阴=S△A′MB-S△A′NH即可得答案.【详解】(1).如图,分别延长,相交于点P,∵四边形是平行四边形,∴,∴,,∵为的中点,∴,在△PDF和△BCF中,,∴△PDF≌△BCF,∴,即为的中点,∴,∵,∴,∴,∴.(2).∵将沿着所在直线折叠,点的对应点为,∴∠CFB=∠C′FB=∠CFC′,,∵为的中点,∴,∴,∴∠FDC′=∠FC′D,∵=∠FDC′+∠FC′D,∴,∴∠FC′D=∠C′FB,∴,∵四边形为平行四边形,∴,DC=AB,∴四边形为平行四边形,∴,∴,∴.(3)如图,过点M作MQ⊥A′B于Q,∵的面积为20,边长,于点,∴BH=50÷5=4,∴CH=,A′H=A′B-BH=1,∵将沿过点的直线折叠,点A的对应点为,∴A′B=AB,∠A=∠A′,∠ABM=∠MBH,∵于点,AB//CD,∴,∴∠MBH=45°,∴△MBQ是等腰直角三角形,∴MQ=BQ,∵四边形ABCD是平行四边形,∴∠A=∠C,∴∠A′=∠C,∵∠A′HN=∠CHB,∴△A′NH∽△CBH,∴,即,解得:NH=2,∵,MQ⊥A′B,∴NH//MQ,∴△A′NH∽△A′MQ,∴,即,解得:MQ=,∴S阴=S△A′MB-S△A′NH=A′B·MQ-A′H·NH=×5×-×1×2=.2.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形绕点顺时针旋转,得到矩形[探究1]如图1,当时,点恰好在延长线上.若,求BC的长.[探究2]如图2,连结,过点作交于点.线段与相等吗?请说明理由.[探究3]在探究2的条件下,射线分别交,于点,(如图3),,存在一定的数量关系,并加以证明.【答案】[探究1];[探究2],证明见解析;[探究3],证明见解析【分析】[探究1]设,根据旋转和矩形的性质得出,从而得出,得出比例式,列出方程解方程即可;[探究2]先利用SAS得出,得出,,再结合已知条件得出,即可得出;[探究3]连结,先利用SSS得出,从而证得,再利用两角对应相等得出,得出即可得出结论.【详解】[探究1]如图1,设.∵矩形绕点顺时针旋转得到矩形,∴点,,在同一直线上.∴,,∴.∵,∴.又∵点在延长线上,∴,∴,∴.解得,(不合题意,舍去)∴.[探究2].证明:如图2,连结.∵,∴.∵,,,∴.∴,,∵,,∴,∴.[探究3]关系式为.证明:如图3,连结.∵,,,∴.∴,∵,,∴,∴.在与中,,,∴,∴,∴.∴.3.(2020·山东中考真题)在等腰△ABC中,AC=BC,是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.【答案】(1)①,;②仍然成立,证明见解析;(2),理由见解析.【分析】(1)①如图1中,连接BE,设DE交AB于T.首先证明再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°得到,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.(2)结论:BE=.如图3中,取AB的中点T,连接CT,FT.证明,可得结论.【详解】解:(1)①如图1中,连接BE,设DE交AB于T.∵CA=CB,∠CAB=45°,∴∠CAB=∠ABC=45°,∴∠ACB=90°,∵∠ADE=∠ACB=45°,∠DAE=90°,∴∠ADE=∠AED=45°,∴AD=AE,∴AT⊥DE,DT=ET,∴AB垂直平分DE,∴BD=BE,∵∠BCD=90°,DF=FB,∴CF=BD,∴CF=BE.故答案为:∠EAB=∠ABC,CF=BE.②结论不变.解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.∵∠ACB=90°,CA=CB,AM=BM,∴CM⊥AB,CM=BM=AM,由①得:设AD=AE=y.FM=x,DM=a,点F是BD的中点,则DF=FB=a+x,∵AM=BM,∴y+a=a+2x,∴y=2x,即AD=2FM,∵AM=BM,EN=BN,∴AE=2MN,MN∥AE,∴MN=FM,∠BMN=∠EAB=90°,∴∠CMF=∠BMN=90°,∴(SAS),∴CF=BN,∵BE=2BN,∴CF=BE.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到,连接DT,GT,BG.∵AD=AE,∠EAD=90°,EG=DG,∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,∵∠CAB=45°,∴∠CAG=90°,∴AC⊥AG,∴AC∥DE,∵∠ACB=∠CBT=90°,∴AC∥BT∥,∵AG=BT,∴DG=BT=EG,∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,∴BD与GT互相平分,∵点F是BD的中点,∴BD与GT交于点F,∴GF=FT,由旋转可得;是等腰直角三角形,∴CF=F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年甲乙双方关于新能源研发的合同
- 宁德2025年福建宁德市周宁县事业单位招聘20人笔试历年典型考点(频考版试卷)附带答案详解
- 2024年旅游贷款用途实施合同3篇
- 2024年物业购买预售合同(最高额抵押部分)3篇
- 2025定制家具销售合同范本
- 新建理发椅用曲木胶合板项目立项申请报告
- 玻璃探测器生产加工项目可行性研究报告
- 柴油发电机组生产加工项目可行性研究报告
- 商超设备项目立项报告
- 非金属粉末生产加工项目可行性研究报告
- 佛山市2022-2023学年七年级上学期期末考试数学试题【带答案】
- 北京市东城区2023-2024学年八年级上学期期末生物试题
- 保险公司增额终身寿主讲课件
- 手术室二氧化碳应急预案及流程
- 静配中心PIVAS标准操作流程培训
- 期末检测卷(试题)-2023-2024学年五年级上册数学北师大版
- 儿童文学概论(第二版) 课件 第4、5章 外国儿童文学概述、儿童文学的各种文体
- 消化系统疾病健康宣教
- 小学英语教学论智慧树知到期末考试答案章节答案2024年丽水学院
- (必考题型30题专项)第二单元 轴对称和平移 易错笔记必考填空题30题特训(试卷)小学数学五年级上册(北师大版含答案)
- 完整版铝板雨棚施工方案
评论
0/150
提交评论